
1

The Importance of Worker Reputation Information
in Microtask-Based Crowd Work Systems

Alberto Tarable, Alessandro Nordio, Emilio Leonardi, Marco Ajmone Marsan

Abstract—This paper presents the first systematic investigation
of the potential performance gains for crowd work systems,
deriving from available information at the requester about
individual worker reputation. In particular, we first formalize
the optimal task assignment problem when workers’ reputation
estimates are available, as the maximization of a monotone (sub-
modular) function subject to Matroid constraints. Then, being
the optimal problem NP-hard, we propose a simple but efficient
greedy heuristic task allocation algorithm. We also propose a
simple “maximum a-posteriori” decision rule and a decision
algorithm based on message passing. Finally, we test and compare
different solutions, showing that system performance can greatly
benefit from information about workers’ reputation. Our main
findings are that: i) even largely inaccurate estimates of workers’
reputation can be effectively exploited in the task assignment
to greatly improve system performance; ii) the performance
of the maximum a-posteriori decision rule quickly degrades
as worker reputation estimates become inaccurate; iii) when
workers’ reputation estimates are significantly inaccurate, the
best performance can be obtained by combining our proposed
task assignment algorithm with the message-passing decision
algorithm.

I. INTRODUCTION

Crowd work is a term often adopted to identify networked
systems that can be used for the solution of a wide range
of complex problems by integrating a large number of human
and/or computer efforts [1]. Alternative terms, each one carry-
ing its own specific nuance, to identify similar types of systems
are: collective intelligence, human computation, master-worker
computing, volunteer computing, serious games, voting prob-
lems, peer production, citizen science (and others). An entire
host of general-purpose or specialized online platforms, such
as information-sharing platforms for recommendations (e.g.,
Tripadvisor, Amazon), co-creation systems (e.g., Wikipedia,
Gnu project), social-purpose communities for urban mobility
(e.g., Waze), microtask-based crowd work systems, etc., can
be defined under these terms.

In this paper, we specialize to microtask-based crowd work
systems. The key characteristic of these systems is that a
requester structures his problem in a set of tasks, and then
assigns tasks to workers that provide answers, which are then
used to determine the correct task solution through a decision
rule. A well-known example of such systems is Amazon

A. Tarable and A. Nordio are with CNR-IEIIT, Torino, Italy. E-mail:
{alberto.tarable; alessandro.nordio}@ieiit.cnr.it.

E. Leonardi and M. Ajmone Marsan are with the Department of Electronic
and Telecommunications, Politecnico di Torino, Torino, Italy and are also
Research Associates with CNR-IEIIT, Torino, Italy. E-mail: {emilio.leonardi,
marco.ajmone}@polito.it.

M. Ajmone Marsan is a part time Research Professor at IMDEA Networks
Institute in Leganes, Madrid, Spain.

Mechanical Turk (MTurk), which allows the employment of
large numbers of low-wage workers for tasks requiring human
intelligence (HIT – Human Intelligence Tasks). Examples of
HIT are image classification, annotation, rating and recom-
mendation, speech labeling, proofreading, etc. In the Amazon
Mechanical Turk, the workload submitted by the requester is
partitioned into several microtasks, with a simple and strictly
specified structure, which are then assigned to (human) work-
ers. Since task execution is typically tedious, and the economic
reward for workers is pretty small, workers are not 100%
reliable, in the sense that they may provide incorrect answers.
Hence, in most practical cases, the same task is assigned in
parallel (replicated) to several workers, and then a majority
decision rule is applied to their answers. A natural trade-off
between reliability of the decision and cost arises; indeed, by
increasing the replication factor of every task, we generally
increase the reliability degree of the final decision about the
task solution, but we necessarily incur higher costs (or, for a
given fixed cost, we obtain a lower task throughput). Although
the pool of workers in crowd work systems is normally large,
it can be abstracted as a finite set of shared resources, so that
the allocation of tasks to workers (or, equivalently, of workers
to tasks) is of key relevance to the system performance. Some
believe that microtask-based crowd work systems will provide
a significant new type of work organization paradigm, and
will employ ever increasing [2] numbers of workers in the
future, provided that the main challenges in this new type of
organizations are correctly solved. In [3] the authors identify
a dozen such challenges, including i) workflow definition
and hierarchy, ii) task assignment, iii) real-time response, iv)
quality control and reputation. All these aspects can represent
an interesting research subject and some of them have already
stimulated a large bulk of literature, as it will be detailed in
the next subsection. However, this paper deals mainly with
task assignment and with the quantitative assessment of the
gain (in terms of increased decision reliability for a given
cost) that a coarse knowledge of worker quality can offer.
Indirectly, thus, we deal also with worker reputation, although
we do not study mechanisms through which reputation is built
upon time. Indeed, we consider a one-shot approach in which
the requester has to assign a bunch of tasks to a pool of
workers that are statically divided into classes according to
their probabilities of answering correctly. We highlight that
the way this division into classes is built is out of the scope
of this paper, although we will analyze the effect of errors in
this classification on the decision reliability.

A. Previous work

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

Janani
Highlight

Janani
Highlight

In current online platforms, task assignment is either im-
plemented through a simple first-come/first-served rule, or
according to more sophisticated approaches. In MTurk, the
requester can specify the number of workers to be assigned to
each task. MTurk also gives requesters the possibility of dis-
missing low-quality answers, so that each experienced worker
is characterized by an approval rating. As a consequence, the
requester is also allowed to prescribe a given qualification
level for workers to be able to access her tasks. An analysis
of the correlation between MTurk approval rating and worker
quality is performed in [4]. In the scientific community, the
task assignment in crowdsourcing systems has recently been
formalized [5]–[8] as a resource allocation problem, under the
assumption that both tasks and workers are indistinguishable.
On the worker side, this assumption is motivated by the fact
that the implementation of reputation-tracing mechanisms for
workers may be challenging, because the workers’ pool is typ-
ically large and highly volatile. A step ahead has been recently
made in [9], which proposes an adaptive online algorithm
to assign an appropriate number of workers to every task,
so as to meet a prefixed constraint on the problem solution
reliability. Like in this paper, in [9] workers are partitioned
in different classes, with workers within each class meeting
a specified reliability index. However, unlike this paper, the
allocation algorithm of [9] is adaptive, i.e., it is based on
previous answers on the same set of microtasks: an assumption
that, although certainly interesting, implies a time-consuming
overall process of task accomplishment. The same adaptive
approach is followed in [10], where a bandit-based algorithm is
adopted to allocate heterogeneous tasks to workers with task-
dependent skills. Given a pool of n questions, [11] investigates
how k questions therefrom should be assigned to a worker.

Most real-world crowdsourcing systems typically imple-
ment a majority-based decision rule to obtain task solutions.
In the last few years, in the scientific literature, smarter
decision rules have been proposed to improve the performance
of crowdsourcing systems, for the case where no a-priori
information about workers’ reputation is available (i.e. workers
are a-priori indistinguishable) while tasks are homogeneously
difficult [5]–[8], [12], [13]. Essentially the same decision
strategy was proposed in [5], [6] and [8] for the case in
which tasks require binary answers, and then recently extended
in [7] and, independently, in [14], to the case in which
tasks require generic multiple-choice answers. In [6], [7] it
is shown that the improved decision rule can be efficiently
implemented employing a message-passing technique. In [12],
an integrated estimation-allocation approach has been pur-
sued with Bayesian inference and entropy reduction as utility
function. Different methodologies based on the Expectation-
Maximization algorithm have been proposed in [13], [15]. All
these algorithms exploit existing redundancy and correlation
in the pattern of answers returned from workers to infer an
a-posteriori reliability estimate for every worker. The derived
estimates are then used to properly weigh workers’ answers.
When there is a-priori information about workers’ reliability,
to the best of our knowledge, the only decision rule proposed
in the literature is weighted average, like, e.g., in [10].

There is a wide literature about workers’ motivation and
reputation. Regarding motivation, many studies report exper-
iments conducted on MTurk as a paradigm of microtask-
based crowd work platform. Classical studies of offline work
reveal that workers try to understand which activities are
better rewarded and tend to prefer those, virtually exclud-
ing others [16]. However, in the context of crowdsourcing
systems, mixed results have been shown about the effect of
economic incentives on the quality of workers’ outputs [17]–
[22]. These studies highlight the importance of intrinsically
non-economical motivations such as the feeling of contributing
towards a greater good, non-financial awards and recognitions,
accomplishing tasks that appear meaningful. An attempt of a
systematic model of crowdsourcing workers with respect to
financial incentives is proposed by [23], in which experiments
carried out on MTurk reveal that a monetary bonus is effective
when it is large enough compared to the base payment, while
it saves money with respect to a generalized increase of the
latter, for the same answers’ quality. Reputation mechanisms
are an important tool for crowdsourcing systems amd are
active already in many online platforms. For example, UpWork
implements a feedback system, which is bidirectional (workers
vote requesters and vice versa). While Upwork distributes
larger and more complex tasks, in microtask-based platforms,
feedback is more limited. As already said, MTurk characterizes
the workers with an approval rating. In the scientific literature,
examples of algorithms that incorporate auditing processes
in a sequence of task assignments for worker reputation
assessment can be found in [24]–[30]. In [31], a dynamical
reputation mechanisms is devised for a crowd composed of
three types of workers: altruistic, malicious and rational. It
is shown in [31] that, with a proper dimensioning of the
financial rewards and penalties, the probability of an audit
(where the requester herself executes the task) tends to zero.
More in general, [32] studies the impact of malicious workers
on the performance of crowdsourcing systems. It is recognized
in [33] that the reputation of each worker must differentiate
according to different types of task. In [34], a task similarity
graph is used to infer workers reliabilities for open tasks
based on their performance on completed tasks. An aspect
closely related to reputation is online workers’ quality control.
Some systems, such as UpWork Worker Diary, make available
to the requester periodic snapshots of workers’ computer
screens, to increase visibility on how the employed workers
are behaving. The impact of the so-called attention-check
questions (trick questions inserted in a task in order to test the
worker’s attention) is analyzed in [4], where it is concluded
that such questions are useful only for low-reliability workers
and may be counter-productive for high-reliability workers.
Workers’ quality control can be partly automated, and made
more effective by employing machine-learning techniques like
reinforcement learning [35], [36]. Finally, regarding workers’
organization, [37] presents a comprehensive literature survey
on human resource management in crowdsourcing systems.

B. Our contribution
Task assignment and reputation are central to this paper,

where we discuss optimal task assignment with approximate

2

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

information about the quality of answers generated by workers
(with the term “worker reputation” we generally mean the
worker earnestness, i.e., the credibility of a worker’s answer
for a given task, which we will quantify with an error proba-
bility). Our optimization aims at minimizing the probability
of an incorrect task solution for a maximum number of
tasks assigned to workers, thus providing an upper bound
to delay and a lower bound on throughput. A dual version
of our optimization is possible, by maximizing throughput
(or minimizing delay) under an error probability constraint.
Like in most analyses of crowd work systems, we assume no
interdependence among tasks, but the definition of workflows
and hierarchies is an obvious next step. Both these issues (the
dual problem and the interdependence among tasks) are left
for further work.

The goal of this paper is to provide the first systematic
analysis of the potential benefits deriving from some form of
a-priori knowledge about the reputation of workers, extending
the results of our preliminary work [38]. With this goal in
mind, first we define and analyze the task assignment problem
when workers’ reputation estimates are available. In particular,
we suppose that available workers are divided into classes,
each of which represents a different reliability level. Under this
hypothesis, we show that in some cases, the task assignment
problem can be formalized as the maximization of a monotone
submodular function subject to Matroid constraints. A greedy
algorithm with performance guarantees is then devised. In
addition, we propose a simple “maximum a-posteriori“ (MAP)
decision rule, which is well known to be optimal when perfect
estimates of workers’ reputation are available. Moreover, we
introduce a message-passing decision algorithm, which is able
to encompass a-priori information about workers’ reputation,
thus improving upon the one described in [6]. Finally, our
proposed approach is tested in several scenarios, and compared
to previous proposals.

Our main findings are:
• even largely inaccurate estimates of workers’ reputation

can be effectively exploited in the task assignment to
greatly improve system performance;

• the performance of the maximum a-posteriori decision
rule quickly degrades as worker reputation estimates
become inaccurate;

• when workers’ reputation estimates are significantly in-
accurate, the best performance can be obtained by com-
bining our proposed task assignment algorithm with the
message-passing decision algorithm presented in this
paper;

• there is no need for a large number of refined classes, i.e.,
a coarse quantization of individual reputations already
achieves most of the related gain.

II. SYSTEM ASSUMPTIONS

We consider T binary tasks θ1, θ2, . . . , θT , whose outcomes
can be represented by i.i.d. uniform random variables (RV’s)
τ1, τ2, . . . , τT over {±1}, i.e., P{τt = ±1} = 1

2 , t = 1, . . . , T .
In order to obtain a reliable estimate of task outcomes, a
requester assigns tasks to workers selected from a given popu-

lation of size W , by querying each worker ωw, w = 1, . . . ,W
a subset of tasks.

Each worker is modeled as a binary symmetric channel
(BSC) [39, p. 8]. This means that worker ωw, if queried
about task θt, provides a wrong answer with probability ptw,
ptw ∈ [0, 1/2], and a correct answer with probability 1− ptw.
The error probabilities ptw are taken to be time-invariant and
generally unknown to the requester.

Remark 1 In practice, ptw can be estimated by analyzing
the workers’ performance during previous task assignments.
However how to estimate ptw is out of the scope of this work.

Remark 2 We assume that the task allocation process works
in one-shot. More precisely, at time t the allocation algorithm
submits all tasks to workers on the basis of the reputation they
have at that time. Therefore, possible time variations of the
workers’ reputation do not affect task allocation. Also, tasks
are assumed to be evaluated by workers in a short amount
of time. Therefore workers’ error probabilities, ptw, are not
expected to significantly vary during the process. An analysis
of the system performance in the presence of time variations of
workers’ reputations would require models and algorithms for
building reputation on the basis of previously assigned tasks.
However, our scope is not to investigate how these reputations
can be built, rather to assess how reputation can be exploited
by task allocation and decision algorithms.

By making these assumptions, we avoid modeling the
workers’ behaviour as driven by latent motivations, as in,
e.g., [31]. In particular, we do not deal with malicious workers
(for which ptw = 1). As a matter of fact, a worker that always
outputs the wrong answer provides as much information to
the aware requester as a worker that answers correctly all the
times. We also assume that ptw depends on both the worker
and the task, a fact that reflects the realistic consideration that
tasks may have different levels of difficulty, that workers may
have different levels of accuracy, and may be more skilled in
some tasks than in others [33].

Similarly to [9], we assume in this paper that, thanks to
a-priori information, the requester can group workers into
classes, each one composed of workers with similar accuracy
and skills. In practical crowd work systems, where workers are
identified through authentication, such a-priori information can
be obtained at no cost by observing the results of previous
task assignments: this is the case of the approval rating in
MTurk, for example. More precisely, we suppose that each
worker belongs to one of K classes, C1, C2, . . . , CK , and
that each class is characterized, for each task, by a different
representative error probability, known to the requester. Let πtk
be the representative error probability for class Ck and task θt,
k = 1, . . . ,K, t = 1, . . . , T . In practice, classes may derive
from a quantization of estimated individual error probabilities.
The reason of dealing with classes, instead of individuals,
stems from the fact that ptw is estimated heuristically and
thus it is affected by inaccuracy. Because of that, sacrificing
precision should not entail a major performance loss, while
it simplifies the task allocation phase. This intuition will be
confirmed in Section VI.

3

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

Janani
Highlight

Most times, in the following, we will deal with a case where
πtk is the average error probability of workers belonging to
class k. This allows to abstract from the practical way in
which classes are built. In particular our class characterization
encompasses two extreme scenarios:

• full knowledge about the reliability of workers, i.e., each
worker belonging to class Ck has error probability for
task θt deterministically equal to πtk, and

• a hammer-spammer (HS) model [5], in which perfectly
reliable and completely unreliable users coexists within
the same class. A fraction 2πtk of workers in class Ck,
when queried about task θt, has error probability equal
to 1

2 (the spammers), while the remaining workers have
error probability equal to zero (the hammers). Note that
this is an artificial scenario, where the variance within a
single class is pushed to the limit, thus allowing to test
the robustness of our task assignment algorithm to a very
unfavorable class composition.

Suppose that class Ck contains a total of Wk workers, with
W =

∑K
k=1Wk. The first duty the requester has to carry out is

the assignment of tasks to workers. We impose the following
two constraints on possible assignments:

• a given task θt can be assigned at most once to a given
worker ωw, and

• no more than rw tasks can be assigned to worker ωw.

Notice that the second constraint arises from practical consid-
erations on the amount of load a single worker can tolerate.
We also suppose that each single assignment of a task to a
worker has a cost, which is independent of the worker’s class.
In practical microtask-based crowdsourcing systems, such cost
represents the low wages per task the requester pays the
worker, in order to obtain answers to his queries1. In this
work, we assume the same cost for all workers, although
it may appear more natural to differentiate wages among
different classes, so as to incentivize workers to properly
behave [27], [28]. Our choice, however, is mainly driven by
the following two considerations: i) while it would be natural
to differentiate wages according to the individual reputation of
workers, when the latter information is sufficiently accurate,
it is much more questionable to differentiate them according
to only a collective reputation index, such as πtk, especially
when workers with significantly different reputation coexist
within the same class; ii) since in this paper our main goal
is to analyze the impact on system performance of a-priori
available information about the reputation of workers, we
need to compare the performance of such systems against
those of systems where the requester is completely unaware
of workers’ reputation, under the same cost model. Finally,
we wish to remark that both our problem formulation and
proposed algorithms naturally extend to the case in which costs
are class-dependent.

1We suppose that is the requester has no possibility of refusing the payment
for an executed task, whether successful or not.

Let an allocation be a set2 of assignments of tasks to
workers. More formally, we can represents a generic allo-
cation with a set G of pairs (t, w) with t ∈ {1, · · · , T}
and w ∈ {1, · · · ,W}, where every element (t, w) ∈ G
corresponds to an individual task-worker assignment. Let O
be the complete allocation set, comprising every possible
individual task-worker assignment (in other words O is the set
composed of all the possible T ·W pairs (t, w)). Of course,
by construction, for any possible allocation G, we have that
G ⊆ O. Hence, the set of all possible allocations corresponds
to the power set of O, denoted as 2O.

The set G can also be seen as the edge set of a bipartite
graph where the two node subsets represent tasks and workers,
and there is an edge connecting task node t and worker node
w if and only if (t, w) ∈ G. It will be sometimes useful in
the following to identify the allocation with the biadjacency
matrix of such graph. Such binary matrix of size T ×W will
be denoted G(G) = {gtw}, gtw ∈ {0, 1} and referred to as
the allocation matrix.

In this work, we suppose that the allocation is non-adaptive,
in the sense that all assignments are made before any decision
is attempted. With this hypothesis, the requester must decide
the allocation only on the basis of the a-priori knowledge
on worker classes. Because of this one-shot assumption,
both individual and class error probabilities are considered
to be constant over time, as well as constant is the mapping
between workers and classes. Adaptive allocation strategies
can be devised as well, in which, after a partial allocation,
a decision stage is performed, and gives, as a subproduct,
refined a-posteriori information both on tasks and on workers’
accuracy. This information can then be used to optimize further
assignments. However, in [6] it was shown that non-adaptive
allocations are order optimal in a single-class scenario.

When all the workers’ answers are collected, the requester
starts deciding, using the received information. Let A(G) =
{atw} be a T × W random matrix containing the workers’
answers and having the same sparsity pattern as G(G). Pre-
cisely, atw is nonzero if and only if gtw is nonzero, in which
case atw = τt with probability 1 − ptw and atw = −τt with
probability ptw. For every instance of the matrix A(G) the
output of the decision phase is an estimate vector τ̂ (G) =
[τ̂1, τ̂2, . . . , τ̂T] for task values. In the following, for notation
simplicity we will drop the dependence of the matrices G and
A and of the estimates τ̂ on the allocation set G, except when
needed for clarity of presentation.

As a final justification of the model described in this section,
we describe here a modus operandi for a microtask-based
crowdsourcing system like MTurk, that would be well modeled
by our assumptions. Suppose the platform first calls for a
prequalification with respect to a given set of tasks. After
the due number of workers have applied, this first phase
is closed, and the crowd of potential workers is formed.
In the second phase, such crowd is partitioned into classes

2In the following, sets are denoted by calligraphic uppercase letters and
families of sets are denoted by bold calligraphic uppercase letters. Moreover,
vectors and matrices are represented by lowercase and uppercase bold letters,
respectively. The matrix M whose elements are mij is also denoted by M =
{mij}.

4

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

according to reputation, and actual task assignment to (a subset
of) applicants takes place. Finally, answers are collected and
decisions are taken.

III. PROBLEM FORMULATION

In this section, we formulate the problem of the optimal
allocation of tasks to workers, with different possible per-
formance objectives. We formalize such problem under the
assumption that each worker in class Ck has error probability
for task θt deterministically equal to πtk. By sorting the
columns (workers) of the allocation matrix G, we can partition
it as

G = [G1,G2, . . . ,GK] (1)

where Gk is a binary matrix of size T ×Wk representing the
allocation of tasks to class-k workers.

We define dtk as the weight (number of ones) in the t-th
row of matrix Gk, which represents the number of times
task t is assigned to class-k workers. Such weights can be
grouped into the T ×K matrix of integers D(G) = {dtk}.

Remark. If the individual error probability of the workers
within one class is not known to the scheduler, it becomes
irrelevant which worker in a given class is assigned the task.
What only matters is actually how many workers of each class
is assigned each task. Under this condition

1) any performance parameter to be optimized can be
expressed as a function of the weight matrix D;

2) any two allocation sets G1 and G2 such that D(G1) =
D(G2) show the same performance;

3) by optimizing the weight matrix D(G) we also optimize
the set of allocations G.

A. Optimal allocation

We formulate the problem of optimal allocation of tasks
to workers as a combinatorial optimization problem for a
maximum overall cost. Let Φ(G) be a given performance
parameter to be maximized. We fix the maximum number of
assignments (i.e., the maximum number of ones in matrix G)
to a value C, and we seek the best allocation G as

Gopt = arg max
G

Φ(G)

s.t. 0≤dtk≤Wk, t=1, . . . , T, k=1, 2, . . . ,K,

T∑
t=1

dtk ≤
W (k)∑

w=W (k−1)+1

rw, k=1, . . . ,K,

T∑
t=1

K∑
k=1

dtk ≤ C (2)

where dtk are the (integer) elements of D(G), W (k) =∑k
i=1Wi and W (0) = 0. The second constraint in (2)

expresses the fact that dtk is the number of ones in the t-
th row of Gk, the third constraint derives from the maximum
number of tasks a given worker can be assigned, and the last
constraint fixes the maximum overall cost.

Note that it could also be possible to define a dual optimiza-
tion problem, in which the optimization aims at the minimum

cost, subject to a maximum admissible error probability; this
alternative problem is left for future work.

We now denote by F the family of all feasible allocations
(i.e. the collection of all the allocations respecting the con-
straints on the total cost and the worker loads). Observe that
by construction F ⊆ 2O is composed of all the allocations G
satisfying: i) |G| ≤ C, and ii) |L(w,G)| ≤ rw ∀w, where
L(w,G) represents the set of individual assignments in G
associated to w.

Proposition 3.1: The family F forms a Matroid [40]. Fur-
thermore, F satisfies the following property. Let B ⊆ F be
the family of maximal sets in F , then q = maxG∈B |G|

minG∈B |G| = 1.
The proof is reported in the Supplemental material.

1) Computational complexity: the complexity of the above
optimal allocation problem heavily depends on the structure
of the objective function Φ(G) (which when specifying the
dependence on the allocation set G can be rewritten as
Φ(G)). As a general property, observe that necessarily Φ(G) is
monotonic, in the sense that Φ(G1)≤Φ(G2) whenever G1⊂G2.
However, in general, we cannot assume that Φ(G) satisfies
any other specific property (some possible definitions for Φ(G)
are given next). For a general monotonic objective function,
the optimal allocation of tasks to workers can be shown to
be NP-hard, since it includes as a special case the problem
of the maximization of a monotonic submodular function,
subject to a uniform Matroid constraint (see [40])3. When
Φ(G) is submodular, the optimal allocation problem falls
in the class of problems related to the maximization of a
monotonic submodular function subject to Matroid constraints.
For such problems, it has been proved that a greedy algorithm
yields a 1/(1+q)-approximation [40] (where q is defined as in
Proposition 3.1). In the next subsections, we consider different
choices for the performance parameter Φ(G).

B. Average task error probability

A possible objective of the optimization, which is most
closely related to typical performance measures in practical
crowd work systems, is the average task error probability,
which (except for the minus sign, which is due to the fact that
we need to minimize, rather than maximize, error probability)
is defined as:

Φ1(G) = − 1

T

T∑
t=1

Pe,t (3)

where
Pe,t = P{τ̂t 6= τt} = P{τ̂t 6= 1|τt = 1} (4)

is the error probability on task t and where the second
equality in (4) follows from the fact that tasks are uni-
formly distributed in {±1}. Note that the probabilities Pe,t,
t = 1, . . . , T depend on the allocation set G through the
vector of task estimates τ̂ . Of course, Pe,t can be exactly
computed only when the true workers’ error probabilities ptw
are available; furthermore it heavily depends on the adopted

3A set function f : 2O → R+ is said to be submodular if: ∀A,B ∈ 2O we
have f(A∪B)+f(A∩B) ≤ f(A)+f(B). The problem of the maximization
of a monotonic submodular function subject to a uniform Matroid constraint
corresponds to: {max|A|≤K f(A) for K < |O| with f(·) submodular.}

5

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

decoding scheme. As a consequence, in general, Pe,t can only
be approximately estimated by the requester by confusing
the actual worker error probability ptw (which is unknown)
with the corresponding average class error probability πtk.
Assuming a maximum-a-posteriori (MAP) decoding scheme,
namely, τ̂t(α) = arg maxτt∈±1 P{τt|at = α}, where at is
the t-th row of A and α is its observed value, we have

Pe,t =
∑

α:P{τt=1|at=α}<1/2

P{at = α|τt = 1} . (5)

It is easy to verify that the exact computation of this average
task error probability estimate requires a number of operations
growing exponentially with the number of classes K. Thus,
when the number of classes K is large, the evaluation of (5)
can become critical.

To overcome this problem, we can compare the performance
of different allocations on the basis of a simple pessimistic
estimate of the error probability, obtained by applying the
Chernoff bound to the random variable that is driving the
maximum-a-posteriori (MAP) decoding (details on a MAP
decoding scheme are provided in the next section). We have:

Pe,t ≤ P̂e,t = exp

(
−
∑
k dtk(1− 2πtk)ztk∑

k(dtkztk)2

)
where ztk = log(1−πtk

πtk
). Thus, the performance metric associ-

ated with an allocation becomes Φ2(G) = − 1
T

∑T
t=1 P̂e,t. The

computation of Φ2(G) requires a number of operations that
scales linearly with the product T ·K. However, in practical
cases, we expect the number of classes to be sufficiently small
(order of few units), so that the evaluation of (5) is not an issue.

C. Overall mutual information

An alternative information-theoretic choice for Φ(G) is the
mutual information between the vector of RVs associated with
tasks τ = (τ1, τ2, . . . , τT) and the answer matrix A(G), i.e.,

Φ3(G) = I(A; τ) =

T∑
t=1

I(at; τt) . (6)

It is well known that a tight relation exists between the mutual
information and the achievable error probability, so that a max-
imization of the former corresponds to a minimization of the
latter. We remark, however, that, contrary to error probability,
mutual information is independent from the adopted decoding
scheme, because it refers to an optimal decoding scheme.
This property makes the adoption of mutual information as
the objective function for the task assignment quite attractive,
since it permits to abstract from the decoding scheme. The
second equality in (6) comes from the fact that tasks are
independent and workers are modeled as BSCs with known
error probabilities, so that answers to a given task do not
provide any information about other tasks. By definition

I(at; τt) = H(at)−H(at|τt) = H(τt)−H(τt|at) (7)

where H(a) denotes the entropy of the RV a, given by4

H(a) = −Ea[logP(a)] and for any two random variables

4Ea denotes the expectation with respect to RV a.

a, b, H(a|b) is the conditional entropy defined as H(a|b) =
−EbEa|b[logP(a|b)]. In what follows, we assume perfect
knowledge of worker reliabilities, i.e., we assume that each
class-k worker has error probability with respect to task τt
exactly equal to πtk, remarking that in the more general case,
the quantities we obtain by substituting ptw with the corre-
sponding class average πtk, can be regarded as computable
approximations for the true uncomputable mutual information.

Since we have modeled all workers as BSCs, each single
answer is independent of everything else given the task value,
so that

H(at|τt) =
∑
atw 6=0

H(atw|τt) =
K∑
k=1

dtkHb(πtk). (8)

where Hb(p) = −p log p− (1− p) log(1− p). For the second
equality in (7), H(τt) = 1 because τt is a uniform binary RV,
and

H(τt|at) =
∑
α

P{at = α}H(τt|at = α)

=
∑
α

P{at = α}Hb(P{τt = 1|at = α}) (9)

where α runs over all possible values of at.
By symmetry, for every α such that P{τt = 1|at = α} < 1

2 ,
there is α′ such that P{at = α′} = P{at = α} and P{τt =
1|at = α′} = 1 − P{τt = 1|at = α}. As a consequence, we
can write

H(τt|at) = 2
∑

α:P{τt=1|at=α}< 1
2

P{at=α}Hb(P{τt=1|at=α})

=
∑

α:P{τt=1|at=α}< 1
2

(P{at=α|τt=1}+ P{at=α|τt=−1}) ·

Hb(P{τt = 1|at = α}) (10)

Notice the relationship of the above expression with (5). If
in (10) we substitute Hb(P{τt = 1|at = α}) with P{τt =
1|at = α}, thanks to Bayes’ rule, we obtain (5).

An explicit computation of I(A; τ) can be found in the
Supplemental material. Like for the task error probability, the
number of elementary operations required to compute I(A; τ)
grows exponentially with the number of classes K.

An important property that mutual information satisfies is
submodularity. This property provides some guarantees about
the performance of the greedy allocation algorithm described
in Section IV-A.

Proposition 3.2 (Submodularity of the mutual information):
Let G be a generic allocation for task θ and let a(G) be
a random vector of answers for task θ. Then, the mutual
information I(a(G); τ) is a submodular function.

Proof: The proof is given in the Supplemental material.

D. Max-min performance parameters

The previous optimization objectives represent a sensible
choice whenever the target is to optimize the average task
performance. However, in a number of cases it can be
more appropriate to optimize the worst performance among

6

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

all tasks, thus adopting a max-min optimization approach.
Along the same lines used in the definition of the previous
optimization objectives, we can obtain three other possible
choices of performance parameters to be used in the opti-
mization problem defined in (2), namely, the maximum task
error probability, Φ4(G) = −maxt=1,...,T Pe,t the Chernoff
bound on the maximum task error probability, Φ5(G) =
−maxt=1,...,T P̂e,t and the minimum mutual information,
Φ6(G) = mint=1,2,...,T I(at; τt).

IV. ALLOCATION STRATEGIES

As we observed in Section III, the optimization problem
stated in (2) is NP-hard, but the submodularity of the mu-
tual information objective function over a Matroid, coupled
with a greedy algorithm yields a 1/2-approximation [40] (see
Proposition 3.1). We thus define in this section a greedy task
assignment algorithm, to be coupled with the MAP decision
rule which is discussed in the next section.

A. Greedy task assignment

The task assignment we propose to approximate the optimal
performance is a simple greedy algorithm that starts from an
empty assignment (G(0) = ∅), and at every iteration i adds to
G(i−1) the individual assignment (t, w)(i), so as to maximize
the objective function. In other words;

(t, w)(i) = arg max
(t,w)∈O\G(i−1)

(G(i−1)∪{(t,w)})∈F

Φ(G(i−1) ∪ {(t, w)})

The algorithm stops when no assignment can be further added
to G without violating some constraint.

To execute this greedy algorithm, at step i, for every task
t, we need to i) find, if any, the best performing worker to
which task t can be assigned without violating constraints,
and mark the assignment (t, w) as a candidate assignment;
ii) evaluate for every candidate assignment the performance
index Φ(G(i−1)∪(t, w)) ∀t; iii) choose among all the candidate
assignments the one that greedily optimizes performance.

Observe that, as a result, the computational complexity of
our algorithm is O(T 2 ·WZ) where Z represents the number
of operations needed to evaluate Φ(G).

Note that in light of both Propositions 3.1 and 3.2, the
above greedy task assignment algorithm provides a 1/2-
approximation when the objective function Φ3(G) (i.e., mutual
information) is chosen. Furthermore, we wish to mention that
a better (1−1/e)-approximation can be obtained by cascading
the above greedy algorithm with the special local search
optimization algorithm proposed in [40]; unfortunately, the
corresponding cost in terms of computational complexity is
rather severe, because the number of operations requested to
run the local search procedure is Õ((T ·W)8Z).5

B. Uniform allocation

Here we briefly recall that [5], [6] proposed a simple task
allocation strategy (under the assumption that workers are

5The function f(n) is Õ(g(n)) if f(n) = O(g(n) logb n) for any positive
constant b.

indistinguishable) according to which a random regular bipar-
tite graph is established between tasks and selected workers.
Every selected worker is assigned the same maximal number
of tasks, i.e. rw = r, ∀w, except for rounding effects induced
by the constraint on the maximum total number of possible
assignments C.

V. DECISION ALGORITHMS

A. Majority voting

Majority voting is the simplest possible task-decision rule
and is currently implemented in all real-world crowd work
systems. For every task θt, it simply consists in counting the
{+1} and the {−1} in at and then taking τ̂t(at) in accordance
to the answer majority. More formally:

τ̂t(at) = sgn

(∑
w

atw

)
. (12)

Note that when
∑
w atw = 0, τ̂t(at) is randomly chosen in

{−1,+1}.

B. MAP decision for known workers’ reputation

For the case where each class-k worker has error probability
with respect to task τt deterministically equal to πtk, the
optimal MAP decision rule can be derived analytically. Indeed,
given an observed value of at, the posterior log-likelihood ratio
(LLR) for task τt is

LLRt(at) = log
P{τt = 1|at}
P{τt = −1|at}

=
∑

w:atw 6=0

log
P{atw|τt = 1}
P{atw|τt = −1}

(13)

where the second equality comes from Bayes’ rule and the
fact that tasks are uniformly distributed over ±1, and the third
equality comes from modeling workers as BSCs. Let mtk be
the number of “−1” answers to task t from class-k workers.
Then

LLRt(at) =

K∑
k=1

(dtk − 2mtk) log
1− πtk
πtk

. (14)

The MAP decision rule outputs the task solution estimate
τ̂t = 1 if LLRt > 0 and τ̂t = −1 if LLRt < 0, that is,

τ̂t(at) = sgn (LLRt(at)) . (15)

Observe that the computation of (14) has a complexity
growing only linearly with K, and that, according to (15), each
task solution is estimated separately. Note also that, whenever
worker reputation is not known a-priori, the above decision
rule is no more optimal, since it neglects the information that
answers to other tasks can provide about worker reputation.

C. Oracle-aided MAP decision

The oracle-aided MAP decision rule is a non-implementable
decision strategy which has direct access to the error proba-
bilities ptw of every individual worker for every task.

7

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

Janani
Highlight

Janani
Highlight

According to the oracle-aided MAP decision rule, first we
compute for every task θt:

OLLRt(at) =
∑
w

atw log
1− ptw
ptw

. (16)

Then, the oracle-aided MAP decision rule outputs the task
solution estimate τ̂t = 1 if OLLRt > 0 and τ̂t = −1 if
OLLRt < 0, that is,

τ̂t(at) = sgn (OLLRt(at)) . (17)

Observe that the oracle-aided MAP decision rule provides
an upper bound to the performance of every implementable
decision rule (i.e., it gives a lower bound on the error proba-
bility).

D. Low-rank approximation (LRA)

For the sake of comparison, we briefly recall here the
Low-Rank Approximation decision rule proposed in [5], [6],
[8] for the case when: i) no a-priori information about the
reputation of workers is available, ii) the error probability of
every individual worker w is the same for every task, i.e.,
ptw = pw ∀t. The LRA decision rule was shown to provide
asymptotically optimal performance under assumptions i) and
ii) [6].

Denote with v the leading right singular vector of A, the
LRA decision is taken according to:

τ̂t(at) = sgn (LRA(at))

where
LRA(at) =

∑
w

atwvw

The idea underlying the LRA decision rule is that each
component of the leading singular vector of A, measuring
the degree of coherence among the answers provided by
the corresponding worker, represents a good estimate of the
worker’s reputation.

E. Message passing

Another possible suboptimal decision algorithm is based on
message passing (MP). The fundamental idea behind MP is
that, if the allocation matrix G is sparse, the MAP algorithm
can be well approximated by exchanging locally computed
messages, between the nodes of the bipartite graph whose
biadjacency matrix is G, for a certain number of iterations.
The algorithm is based on the hypothesis that a given worker
behaves in the same way for all tasks, i.e., ptw = pw for all t
and w, so that πtk = πk for all t and k.

Our MP algorithm is an extension of the one described
in [6], where we take into account the a-priori information
about worker classes. In [6] it is shown that a particular MP
algorithm can be seen as an efficient implementation of the
LRA decision rule. In such MP algorithm, workers are seen
as a statistical mixture of a hammer (pw = 0) and a malicious
worker (pw = 1). Initially, the statistical mixture assigns the
same weight to both hypotheses, while at each iteration the
weights are corrected, strengthening or weakening the hammer

hypothesis for each worker according to whether she has
answered correctly most tasks or not. Our implementation,
instead, assumes a different statistical mixture for each class,
and a more complex weight update rule, which is essentially
locally optimal. The details of our implementation follow.

In the considered bipartite graph, nodes are either task nodes
or worker nodes. An edge connects task node t to worker node
w if and only if gtw = 1. Messages are exchanged along the
edges. Let k(w) be the class which worker w belongs to and
f
(0)
k(w)(p) be the a-priori pdf of the error probability for class

k(w). Let m(l)
t→w and m(l)

w→t be the messages sent from task
node t to worker node w (resp. from worker node w to task
node t) in the l-th iteration, l = 1, 2, . . . Given the answer
matrix A = {atw}, the MP algorithm reads as follows.

Initial condition:

p
(0)
tw = πk(w) (18)

For l = 1, 2, . . .

Output LLR:

LLR
(l)
t =

∑
w

atw log
1− p(l−1)tw

p
(l−1)
tw

(19)

Task-to-worker message:

m
(l)
t→w =

∑
w′ 6=w

atw′ log
1− p(l−1)tw′

p
(l−1)
tw′

(20)

Worker-to-task message:

m
(l)
w→t = p

(l)
tw =

∫ 1

0

pf
(l)
tw (p)dp, (21)

being

f
(l)
tw (p)∝f (0)k(w)(p)

∏
t′ 6=t

[
1+(1−2p)at′w tanh

(
m

(l)
t′→w
2

)]
(22)

It can be seen from (19) that, at each iteration, task nodes
perform the LLR computation as in the MAP decision rule
for known workers’ reputation, similarly to (14), with the
current estimates of workers’ error probabilities. Because of
the initialization in (18), the LLR outputs at the first iteration
are equal to (14).

The task-to-worker message in (20) is the extrinsic LLR,
i.e., the one that does not consider the incoming message on
the same edge. The worker-to-task message in (21) is the
updated estimate p

(l)
tw of the error probability pw of worker

w. It is computed as the average with respect to the current
pdf f (l)tw (p) for task t of pw, given by (22). The details of the
derivation of (22) are given in the Supplemental material.

Regarding the a-priori pdf, several choices are possible. In
our implementation, we have considered as a-priori pdf f (0)k (p)
the max-entropy distribution [39, Ch. 12] over [0, 1/2] with a
mean equal to πk, namely

f
(0)
k (p) ∝ eλkp (23)

where λk is a parameter that depends on the mean πk. If

8

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

TABLE I
MAIN PARAMETERS FOR THE THREE CONSIDERED SCENARIOS

T πt1 πt2 πt3 W1 W2 W3

Scenario 1 100 0.1 0.2 0.5 30 120 150

Scenario 2 50 0.05 0.1 0.5 30 120 15050 0.1 0.2 0.5

Scenario 3 50 0.1 0.2 0.5 40 120 4050 0.5 0.2 0.1
Scenario 4 100 πtk = 2k−1

4K
, 1≤k≤K

∑
kWk = 90

Haldane priors are assumed for all workers, i.e.,

f
(0)
k (p) =

1

2
δ(p) +

1

2
δ(p− 1) (24)

where δ(·) denotes Dirac delta function, then we obtain the
simplified MP algorithm whose description can be found
in [6]. Simulation results will show in many cases the ad-
vantage of using (23) instead of (24), whose performance is
essentially the same as the LRA decision rule of Section V-D.

VI. RESULTS

In this section, except stated otherwise, we evaluate the
performance of a system where T = 100 tasks are assigned
to a set of workers, which are organized in K = 3 classes.
Each worker can handle up to 20 tasks, i.e., rw = 20, w =
1, . . . ,W . We compare the performance of the allocation al-
gorithms and decision rules described in Sections IV and V, in
terms of achieved average error probability, Pe = 1

T

∑
t Pe,t.

We study the performance of:
• the “Majority voting” decision rule applied to the “Uni-

form allocation” strategy, hereinafter referred to as “Ma-
jority uniform”;

• the “Majority voting” decision rule applied to the
“Greedy allocation” strategy, hereinafter referred to as
“Majority greedy”;

• the “Low rank approximation” decision rule applied to
the “Uniform allocation” strategy, in the figures referred
to as “LRA uniform”;

• the “Low rank approximation” decision rule applied to
the “Greedy allocation” strategy, in the figures referred
to as “LRA greedy”;

• the “MAP” decision rule applied to the “Greedy allo-
cation” strategy, in the following referred to as “MAP
greedy”.

• the “Message Passing” decision algorithm applied to the
“Greedy allocation” strategy, in the following referred to
as “MP greedy”.

• the “Oracle-aided MAP” decision rule applied to the
“Greedy allocation” strategy, in the following referred to
as “OMAP greedy”.

Specifically, for the greedy allocation algorithm, described in
Section IV-A, we employed the overall mutual information
Φ3(G) as objective function. We consider 4 scenarios char-
acterized by different number of workers, number of classes,
and workers’ error probabilities. The main system parameters
for all scenarios are summarized in Table I.

A. Scenario 1
The first set of results is reported in Figures 1(a), 1(b),

1(c), and 2. For starters, results in these figures refer to the
most classical scenario, where all tasks are identical. For what
concerns workers, we define three classes, and the number
of available workers per class is set to W1 = 30,W2 =
120,W3 = 150. Since each worker can handle up to 20 tasks
(rw = 20), the maximum number of assignments that can
be handled by the three classes are 600, 2400, and 3000,
respectively.

We set πt1 = 0.1, πt2 = 0.2, πt3 = 0.5 for all t. This means
that workers in class 1 are the most reliable, while workers in
class 3 are spammers. This situation is summarized in Table
I as Scenario 1.

The results depicted in Figure 1(a) assume that all workers
belonging to the same class have the same error probability
i.e., ptw = πt,k(w), k(w) being the class worker w belongs
to. In particular, the figure shows the average task error
probability, plotted versus the average number of workers per
task, β = C/T . As expected, greedy allocation strategies
perform much better due to the fact that they exploit the
knowledge about the workers’ reliability (ptw), and thus they
assign tasks to the best possible performing workers. These
strategies provide quite a significant reduction of the error
probability, for a given number of workers per task, or a
reduction in the number of assignments required to achieve a
fixed target error probability. For example, Pe = 10−2 can be
achieved by greedy algorithms by assigning only 6 workers
per task (on average), while algorithms unaware of workers
reliability require significantly more than 20 workers per task
(on average).

Since class 1 can handle up to 600 assignments, for the
greedy allocation algorithm, and for β > 6 the requester
has to allocate tasks to workers of class 2 as well. Since
workers of class 2 are less reliable than workers of class 1
the slopes of the curves decrease. This behavior is not shown
by algorithms employing uniform allocation since they choose
workers irrespectively of the class they belong to.

We also observe that: i) in this scenario the simple MAP
decision rule is optimal (it perfectly coincides with the OMAP)
ii) every decision rule (even the simple majority rule) when
applied in conjunction with a greedy scheduler provides
comparable performance with respect to the optimal MAP
algorithm (within a factor 2), iii) the performance of the MP
greedy algorithm is slightly worse than LRA greedy in this
scenario; iv) some of the algorithms such as the “Majority
greedy” exhibit a non monotonic behavior with respect to β;
this is a consequence of the fact that in order to provide best
performance, these schemes require the number of workers
assigned to tasks to be odd.

As final remark, we would like to observe that we have
also implemented the MP algorithm proposed in [6], obtaining
in all cases results that are practically indistinguishable from
LRA.

Next, we take into account the case where in each class
workers do not behave exactly the same. As already observed,
this may reflect both possible inaccuracies/errors in the re-
construction of user profiles, and the fact that the behavior

9

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

Janani
Highlight

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 2 4 6 8 10 12 14 16 18 20

A
v
er

ag
e

er
ro

r
p
ro

b
ab

il
it

y
 (

P
e)

β

 Majority uniform
 Majority greedy
 LRA uniform
 LRA greedy
 MP greedy
 MAP greedy

(a)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 1 2 3 4 5 6 7 8 9 10

A
v
er

ag
e

er
ro

r
p
ro

b
ab

il
it

y
 (

P
e)

β

 Majority uniform
 Majority greedy
 LRA uniform
 LRA greedy
 MP greedy
 MAP greedy
 OMAP greedy

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

A
v
er

ag
e

er
ro

r
p
ro

b
ab

il
it

y
 (

P
e)

x

 Majority uniform
 Majority greedy
 LRA uniform
 LRA greedy
 MP greedy
 MAP greedy
 OMAP greedy

(c)

Fig. 1. Scenario 1. Figures (a) and (b) report the average error probability versus the average number of workers per task, β, for x = 0 and x = 1,
respectively. Figure (c) shows the average error probability versus x and for β = 10. The parameters of Scenario 1 are reported in Table I.

of workers is not fully predictable, since it may vary over
time. Specifically, we assume that, in each class, two types
of workers coexist, each characterized by a different error
probability ptw. More precisely, workers of type 1 have error
probability ptw = (1 − x)πtk, while workers of type 2 have
error probability probability ptw = (1 − x)πtk + x/2, where
0 ≤ x ≤ 1 is a parameter. Moreover, workers are of type 1
and type 2 with probability 1 − 2πtk and 2πtk, respectively,
so that the average error probability over the workers in class
k is πtk. This bimodal worker model, even if it may appear
somehow artificial, is attractive for the following two reasons:
i) it is simple (it depends on a single scalar parameter x), and
ii) it encompasses as particular cases the two extreme cases
of full knowledge and hammer-spammer. We would like to
remark that the allocation algorithm is unaware of this bimodal
behavior of the workers. Indeed, it assumes that all workers
within class k have the same error probability, πtk.

For x = 0 all workers in each class behave exactly the same
(they all have error probability ptw = πtk(w)); this is the case
depicted in Figure 1(a). For x = 1 we recover the hammer-
spammer scenario; this case is represented in Figure 1(b),
where workers are spammers with probability 2πtk and ham-
mers with probability 1−2πtk. Here, strategies employing the
greedy allocation still greatly outperform schemes employing
uniform allocations. However, differently from the previous
case, the performance of the MAP decision rule is significantly
sub-optimal in this scenario, when compared to “LRA greedy“,
and “MP greedy”. This is due to the following two facts:
i) MAP adopts a mismatched value of the error probability
of individual workers, when x 6= 0, ii) MAP does not
exploit the extra information on individual worker reliability
that is possible to gather by jointly decoding different tasks.
Observe that the performance of “LRA greedy“ and “MP
greedy’ is not significantly different from OMAP. In particular
the scheme “MP greedy” provides performance practically
indistinguishable from OMAP in this scenario.

In Figure 1(c), for β = 10, we show the error probability
plotted versus the parameter x. We observe that the perfor-
mance of the “MAP greedy” strategy is independent on the
parameter x while the performance of “LRA greedy” and “MP

greedy” improves as x increases. This effect can be explained
by observing that the ability of distinguishing good performing
workers from bad performing workers within the same class
increases as x increases. Observe also that the error probability
achieved by “LRA greedy” and “MP greedy” is within a factor
2 from OMAP for every x. In particular, observe that for small
values of x the simple MAP decision rule represents a low-
cost good performing decision strategy, but, as x increases (i.e.
the degree of heterogeneity increases within each class), more
sophisticated decision rules which jointly decode large groups
of tasks are needed to achieve good performance. It is worth
observing that the performance of the “MP greedy” algorithm
becomes very close to OMAP for large values of x.

In light of the previous observations, we can conclude
that the a-priori information about worker reliability can be
effectively exploited to improve the overall performance of
the system both at the scheduler level (e.g. greedy vs uniform
schemes) and at the decision rule level (e.g. “MAP” vs
“Majority greedy” for small x and “MP greedy” vs “LRA
greedy” for large x).

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 2 4 6 8 10 12 14 16 18 20

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

β

 T=50
 T=100
 T=200
 T=400

Fig. 2. Average error probability versus β for different values of T

In Figure 2 we show the performance of the “LRA greedy”
algorithm as the number of tasks varies while the pool of
workers is the same as in the previous figures. Clearly, as the
number of tasks increases the error probability increases since
a larger amount of work is conferred to workers of classes
2 and 3. By looking at the curve for T = 200 we observe

10

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

that (i) for 0 ≤ β ≤ 3 only workers of class 1 are used;
(ii) for 3 < β ≤ 15 the slope of the curve decreases since
workers of both classes 1 and 2 are used; (iii) for β > 15 the
requester allocates tasks also to workers of class 3 which are
spammers. Therefore for β > 15 the error probability does
not further decrease.

B. Scenario 2

Next, we assume that the T = 100 tasks are divided
into 2 groups of 50 each. Workers processing tasks of group
1 and 2 are characterized by average error probabilities
πt1 = 0.05, πt2 = 0.1, πt3 = 0.5 and πt1 = 0.1, πt2 =
0.2, πt3 = 0.5, respectively. This scenario reflects the case
where tasks of group 2 are more difficult to solve than tasks
of group 1 (error probabilities are higher). Workers of class
C3 are spammers for both kinds of tasks. This situation is
summarized in Table I as Scenario 2. Two different approaches
are possible while applying LRA to scenario 2: i) we can
independently apply LRA to blocks of indistinguishable tasks
(we denote this strategy with “LRA greedy blocks”) placing
ourselves on the safer side. ii) we can embrace a more risky
approach by applying directly LRA to the whole set of tasks
(we denote this strategy with “LRA greedy”). Regarding the
MP decision algorithm, we have applied two independent
instances of the algorithm to the two groups of tasks. The
error probabilities provided by the considered algorithms are
plotted in Figures 3(a), 3(b), and 3(c). For the sake of figure
readability results of the basic “Majority uniform” strategy
are not reported. First, observe that the relative ranking of all
strategies is essentially not varied with respect to Scenario 1.
In particular, we wish to highlight the significant performance
gain exhibited by strategies employing the greedy allocation
strategy over those employing a uniform allocation, such as
“LRA uniform“. Second, observe that at first glance unex-
pectedly the “LRA greedy” slightly outperforms “LRA greedy
blocks” for small x. This should not be too surprising, in
light of the fact that: i) even if the error probability of each
user depends on the specific task, the relative ranking among
workers remains the same for all tasks, ii) ‘LRA greedy” gets
advantage from the fact that all tasks are jointly decoded (i.e.
SVD decomposition is applied to a larger matrix A better
filtering out noise).

C. Scenario 3

Finally, in Figures 4(a), 4(b), and 4(c) we consider a
third scenario in which again tasks are partitioned into two
groups of 50 each. Here, however, the number of available
workers per class is set to W1 = 40,W2 = 120,W3 = 40,
and the workers error probabilities for the tasks in group
1 and 2 are given by πt1 = 0.1, πt2 = 0.25, πt3 = 0.5,
and πt1 = 0.5, πt2 = 0.25, πt3 = 0.1, respectively. This
situation reflects the case where workers are more specialized
or interested in solving some kinds of tasks. More specifically,
here workers of class 1 (class 3) are reliable when processing
tasks of group 1 (group 2), and behave as spammers when
processing tasks of group 2 (group 1). Workers of class 2
behave the same for all tasks. This situation is summarized

TABLE II
ASSIGNMENTS PER TASK FOR SCENARIO 3 AS A FUNCTION OF β

d
(1)
t1 d

(2)
t1 d

(1)
t2 d

(2)
t2 d

(1)
t3 d

(2)
t3

β≤16 β 0 0 0 0 β
16<β≤20 β 0 β−16 β−16 0 β

in Table I as Scenario 3. We remark that, as in Scenario 2,
we have applied two independent instances of the MP decision
algorithm to the two groups of tasks. In terms of performance,
first observe that, also for this scenario, even a fairly imprecise
characterization of the worker behavior can be effectively
exploited by the requester to significantly improve system
performance. Second observe that the “LRA greedy” algorithm
shows severely degraded error probabilities for β ≤ 16, while
the “LRA greedy blocks” (which we recall applies LRA
independently to the two blocks of indistinguishable tasks)
behaves properly. The behavior of “LRA greedy” should not
surprise the reader, since our third scenario may be considered
as possibly adversarial for the LRA scheme (when applied
carelessly), in light of the fact that the relative ranking among
workers heavily depends on the specific task. Nevertheless,
it may still appear amazing that “LRA greedy” behaves even
worse than the “LRA uniform” scheme in several cases. The
technical reason for this behavior is related to the fact that,
in our example, for β ≤ 16, tasks of group 1 (group 2) are
allocated to workers of class 1 (class 3) only, whilst workers
of class 2 are not assigned any task. Instead, for 16 < β ≤ 20
tasks of both types are also allocated to workers of class 2.
This situation is summarized in Table II where d(i)tk represents
the number of times a task of type i is assigned to workers
of class k. For this reason, when β ≤ 16 the matrix A turns
out to have a block diagonal structure, which conflicts with
the basic assumption made by LRA that matrix E[A] can be
well approximated by a rank-1 matrix.

It follows that the rank-1 approximations are extremely
inaccurate when applied to the whole matrix A and thus
provide high error probabilities. In such situations, by applying
the LRA algorithm separately on each block of tasks (under
the assumption that we have enough a-priori information to
partitioning tasks into groups), we achieve huge performance
gains.

Finally, we want to remark that we have tested several ver-
sions of greedy algorithms under different objective functions,
such as Φ1(G), Φ2(G), and Φ3(G), finding that they provide,
in general, comparable performance. The version employing
mutual information was often providing slightly better results,
especially in the case of LRA greedy and MP greedy. This
can be attributed to the following two facts: i) the mutual
information was proved to be submodular; ii) being mutual
information independent from the adopted decoding scheme, it
provides a more reliable metric for comparing the performance
of different task allocations under the LRA decoding scheme
with respect to the error probability Φ1(G) (which, we recall,
is computed under the assumption that the decoding scheme
is MAP). Unfortunately, due to the lack of space, we cannot
include these results in the paper.

11

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 2 4 6 8 10 12 14 16 18 20

A
v
er

ag
e

er
ro

r
p
ro

b
ab

il
it

y
 (

P
e)

β

 Majority greedy
 LRA uniform
 LRA greedy
 LRA greedy blocks
 MP greedy
 MAP greedy

(a)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 1 2 3 4 5 6 7 8 9 10

A
v
er

ag
e

er
ro

r
p
ro

b
ab

il
it

y
 (

P
e)

β

 Majority greedy
 LRA uniform
 LRA greedy
 LRA greedy blocks
 MP greedy
 MAP greedy
 OMAP greedy

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1

A
v
er

ag
e

er
ro

r
p
ro

b
ab

il
it

y
 (

P
e)

x

 Majority greedy
 LRA uniform
 LRA greedy
 LRA greedy blocks

 MP greedy
 MAP greedy
 OMAP greedy

(c)

Fig. 3. Scenario 2. Figures (a) and (b) report the average error probability versus the average number of workers per task, β, for x = 0 and x = 1,
respectively. Figure (c) shows the average error probability versus x and for β = 10. The parameters of Scenario 2 are reported in Table I.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 2 4 6 8 10 12 14 16 18 20

A
v
er

ag
e

er
ro

r
p
ro

b
ab

il
it

y
 (

P
e)

β

 Majority greedy
 LRA uniform
 LRA greedy
 LRA greedy blocks
 MP greedy
 MAP greedy

(a)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 1 2 3 4 5 6 7 8 9 10

A
v
er

ag
e

er
ro

r
p
ro

b
ab

il
it

y
 (

P
e)

β

 Majority greedy
 LRA uniform
 LRA greedy
 LRA greedy blocks
 MP greedy
 MAP greedy
 OMAP greedy

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1
A

v
er

ag
e

er
ro

r
p
ro

b
ab

il
it

y
 (

P
e)

x

 Majority greedy
 LRA uniform
 LRA greedy
 LRA greedy blocks
 MP greedy
 MAP greedy
 OMAP greedy

(c)

Fig. 4. Scenario 3. Figures (a) and (b) report the average error probability versus the average number of workers per task, β, for x = 0 and x = 1,
respectively. Figure (c) shows the average error probability versus x and for β = 10. The parameters of Scenario 3 are reported in Table I.

D. Scenario 4

Now, we move to a different scenario in which T = 100
identical tasks are assigned to a population of 90 workers,
each one characterized by an individual reliability index
pt,w. pt,w are uniformly and interdependently extracted in
the range (0, 1/2]. Parameters pt,w are assumed, in general,
to be unknown to the system, which possesses just noisy
estimates p̂t,w of them. Such estimates are typically inferred
from the analysis of past behavior of each worker, as better
explained in the following. On the basis of p̂t,w, workers are
grouped into K classes. Specifically, classes are obtained by
uniformly partitioning the interval [0, 1/2] in K subintervals
and assigning to class k ∈ {1, 2, · · ·K} all the workers whose
estimated reliability index (error probability) p̂t,w falls in the
range (k−12K , k

2K]. Then, the nominal error probability πtk
assigned to class k, is set equal to the median point of he
considered interval, i.e., πtk = 2k−1

4K .
Fig 5 reports the error probability achieved by the LRA-

greedy algorithm vs β for different values of K in a optimistic
scenario, in which perfect estimates of reliability indices are
known to the system, i.e., p̂t,w = pt,w.

As expected, by increasing K, a reduction of the error

probability is observed. However note that performance im-
provements are significant only for relatively small values
of K and β. The marginal performance gain observed by
increasing K from 6 to 9, is rather limited for all values
of β. Even in this ideal case in which full information on
workers’ characteristics is available to the systems, scheduling
tasks just on the basis of a rough classification of the workers
into few classes is not particularly penalizing! These results,
therefore, provide an empirical justification of our approach
of partitioning users into few classes.

To complement previous results, Fig. 6 reports the error
probability for specific values of β and K = 6 when the
reliability estimate p̂t,w is noisy. To keep things simple, we
assume that all workers are tested on an initial number of
tasks (called training tasks) and p̂t,w is derived accordingly, as
the empirical estimate of pt,w on the training tasks. However,
we wish to remark that p̂t,w can be, in principle, obtained
by analyzing answer of workers on previously assigned tasks
without the necessity of subjecting workers to an initial
training phase. Once again, we would like to highlight that a
detailed investigation of how p̂t,w can be obtained goes beyond
the scope of this paper.

12

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

Observe that when the number of training task is 0, no
information about p̂t,w is available and, therefore, workers
are assigned to classes at random. Instead, when the number
of training tasks becomes arbitrarily large, the system can
count on exact estimates of the workers reliability indices.
i.e., p̂t,w = pt,w.

10
-3

10
-2

10
-1

10
0

 0 2 4 6 8 10 12

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

β

 K=1
 K=2
 K=3
 K=6
 K=9

Fig. 5. Average error probability as a function of the average number of
workers per task, β, in Scenario 4.

10
-3

10
-2

10
-1

10
0

0 10 100 1000 ∞

A
v

er
ag

e
er

ro
r

p
ro

b
ab

il
it

y
 (

P
e)

Training tasks

 β=2
 β=4
 β=8
 β=12

Fig. 6. Average error probability as a function of the number of training
tasks in Scenario 4.

Figure 6 shows that even rather imprecise estimates of
p̂t,w (i.e., obtained through the analysis of relatively short
sequences of training tasks) can be effectively exploited to
significantly improve the performance of the system. Further-
more, observe that marginal gains significantly reduces as the
length of training set increases. In particular, for moderate
values of β, performance obtained when the training set size
is set to 100 is hardly distinguishable from that observed
when arbitrarily long training sets are employed. This provides
further support to the viability of our approach, which appears
rather robust to possibly imprecise estimates of workers’
reliability indices.

VII. CONCLUDING REMARKS

In this paper we have presented the first systematic investi-
gation of the impact of information about workers’ reputation
in the assignment of tasks to workers in crowd work systems,
quantifying the potential performance gains in several cases.
We have formalized the optimal task assignment problem
when workers’ reputation estimates are available, as the max-
imization of a monotone (submodular) function subject to
Matroid constraints. Then, being the optimal problem NP-
hard, we have proposed a simple but efficient greedy heuristic

task allocation algorithm. We have also described a simple
“maximum a-posteriori“ decision rule and a well-performing
message-passing decision algorithm. We have tested our pro-
posed algorithms, and compared them to different solutions,
which can be obtained by extrapolating the proposals for the
cases when reputation information is not available, showing
that the crowd work system performance can greatly benefit
from even largely inaccurate estimates of workers’ reputation.
Our numerical results have shown that:

• even a significantly imperfect characterization of the
workers’ reputation can be extremely useful to improve
the system performance;

• the application of advanced joint task decoding schemes
such as message passing can further improve the overall
system performance, especially in the realistic case in
which the a-priori information about worker reputation is
largely affected by errors;

• the performance of advanced joint tasks decoding
schemes such as LRA applied naively may become
extremely poor in adversarial scenarios.

• the results show that “LRA greedy” and “MP greedy”
algorithms perform well in most of the cases; their
difference in terms of performance is rather limited,
therefore they can both be used equivalently in a real-
world scenario.

Future work directions include the extension to time-varying
workers’ behavior, non-binary tasks, and the desing of effec-
tive algorithms for estimating workers’ error probability.

REFERENCES

[1] M.-C. Yuen, I. King, and K.-S. Leung, “A Survey of Crowdsourcing
Systems,” IEEE PASSAT-SOCIALCOM, Boston (MA), USA, Oct. 9–
11, pp. 766–773, 2011.

[2] D. E. Difallah, M. Catasta, G. Demartini, P. G. Ipeirotis, and P. Cudr-
Mauroux, “The dynamics of micro-task crowdsourcing: The case of
amazon mturk”, Proceedings of the 24th International Conference on
World Wide Web, pp. 238–247, 2015.

[3] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J.
Zimmerman, M. Lease, and J. Horton, “The future of crowd work,”
ACM CSCW, San Antonio, Texas, USA, 2013.

[4] E. Peer, J. Vosgerau, and A. Acquisti, “Reputation as a sufficient
condition for data quality on Amazon Mechanical Turk,” Behavior
Research Methods, v. 46, pp. 1023–1031.

[5] D. R. Karger, S. Oh and D. Shah, “Budget- optimal Crowdsourcing
Using Low-rank Matrix Approximations,” 49th Allerton Conf. on Com-
munication, Control, and Computing, pp. 284–291, Sept. 28–30, 2011.

[6] D. R. Karger, S. Oh, and D. Shah, ”Budget-Optimal Task Allocation for
Reliable Crowdsourcing Systems,” Operations Research, Vol. 62, No. 1,
pp. 1–24, 2014.

[7] D. R. Karger, S. Oh, and D. Shah, ”Efficient crowdsourcing for multi-
class labeling,” SIGMETRICS Perform. Eval. Rev., Vol. 41, No. 1, pp.
81–92, June 2013.

[8] A. Ghosh, S. Kale, and P. McAfee, “Who moderates the moderators?:
crowdsourcing abuse detection in user-generated content,” 12th ACM
Conf. on Electronic commerce, New York, NY, USA, pp. 167–176, 2011.

[9] I. Abraham, O. Alonso, V. Kandylas, and A. Slivkins, ”Adaptive
Crowdsourcing Algorithms for the Bandit Survey Problem,” http://arxiv.
org/abs/1302.3268.

[10] H. Zhang, Y. Ma, and M. Sugiyama, “Bandit-based task assignment for
heterogeneous crowdsourcing”, Neural computation, 2015.

[11] Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng, “QASCA: a
quality-aware task assignment system for crowdsourcing applications”,
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 1031-1046, 2015.

13

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

http://arxiv.org/abs/1302.3268
http://arxiv.org/abs/1302.3268

[12] Y. Bachrach, T. Graepel, T. Minka, and J. Guiver, “How To Grade
a Test Without Knowing the Answers–A Bayesian Graphical Model
for Adaptive Crowdsourcing and Aptitude Testing”, ArXiv Preprint,
arXiv:1206.6386, 2012.

[13] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni,
and L. Moy, “Learning from crowds”, the Journal of Machine Learning
Research, v. 11, pp. 1297-1322, 2010.

[14] D. Lee, J. Kim, H. Lee, and K. Jung, “Reliable Multiple-choice Iterative
Algorithm for CS Systems”, in Proc. of the 2015 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, pp. 205–216, 2015.

[15] J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo,
“Whose vote should count more: Optimal integration of labels from
labelers of unknown expertise”, Advances in neural information pro-
cessing systems, pp. 2035-2043, 2009.

[16] S. Kerr, “On the folly of rewarding A, while hoping for B”, Academy
of Management Journal, pp. 769–783, 1975.

[17] D. Chandler, and A. Kapelner, “Breaking monotony with meaning:
Motivation in crowdsourcing markets”, Journal of Economic Behavior
& Organization, pp. 123-133, 2013.

[18] A. Kittur, E.H. Chi, and B. Suh, “Crowdsourcing user studies with
Mechanical Turk”, Proceedings of the 26th annual SIGCHI conference
on Human factors in computing systems - CHI ’08, pp. 453–456, 2008.

[19] S. Lewis, M. Dontcheva, and E. Gerber, “Affective computational
priming and creativity”, Proceedings of the 2011 annual conference on
Human factors in computing systems - CHI’ 11, pp. 735–744, 2011.

[20] W. Mason, and D.J. Watts, “Financial Incentives and the Performance of
Crowds”, Proceedings of The ACM Conference on Human Computation
& Crowdsourcing 2009, 2009.

[21] J. Rogstadius, V. Kostakos, A. Kittur, B. Smus, J. Laredo, and M.
Vukovic, “An Assessment of Intrinsic and Extrinsic Motivation on Task
Performance in Crowdsourcing Markets”, Proceedings of the Fifth
International AAAI Conference on Weblogs and Social Media, 2011.

[22] A.D. Shaw, J.J., Horton, and D.L. Chen, “Designing incentives for
inexpert human raters”, Proceedings of the ACM 2011 conference on
Computer supported cooperative work, pp. 275–284, 2011.

[23] C. J. Ho, A. Slivkins, S. Suri, and J. W. Vaughan, “Incentivizing high
quality crowdwork”, Proceedings of the 24th International Conference
on World Wide Web, pp. 419–429, 2015.

[24] E. Christoforou, A. Fernandez Anta, C. Georgiou, M. A. Mosteiro, and
A. Sanchez, “Applying the dynamics of evolution to achieve reliability
in master-worker computing,” Concurrency and Computation: Practice
and Experience Vol. 25, No. 17, pp. 2363–2380, 2013.

[25] A. Fernandez Anta, C. Georgiou, and M. A. Mosteiro, “Algorithmic
mechanisms for internet-based master-worker computing with untrusted
and selfish workers,” IEEE IPDPS 2010, Atlanta (GA), April 2010.

[26] A. Fernandez Anta, C. Georgiou, L. Lopez, and A. Santos, “Reliable
internet-based master-worker computing in the presence of malicious
workers,” Parallel Processing Letters, Vol. 22, No. 1, 2012.

[27] A. Singla and A. Krause, “Truthful incentives in crowdsourcing tasks
using regret minimization mechanisms,” 22nd international conference
on World Wide Web, Rio de Janeiro, Brazil, May 2013.

[28] E. Kamar and E. Horvitz, ”Incentives for truthful reporting in crowd-
sourcing,” 11th International Conference on Autonomous Agents and
Multiagent Systems, Valencia, ES, pp. 1329-1330, June 2012.

[29] P. Donmez, J. G. Carbonell, and J. Schneider, “Efficiently learning
the accuracy of labeling sources for selective sampling,” 15th ACM
SIGKDD international conference on Knowledge discovery and data
mining, New York (NY), USA, pp. 259-268, June 2009.

[30] Y. Zheng, S. Scott, and K. Deng, “Active learning from multiple noisy
labelers with varied costs,” 2010 IEEE 10th International Conference on
Data Mining, Sydney, Australia, Dec. 13–17, pp. 639–648, 2010.

[31] E. Christoforou, A. Fernández Anta, C. Georgiou, M. A. Mosteiro,
“Reputation-Based Mechanisms for Evolutionary Master-Worker Com-
puting,” in Principles of Distributed Systems: Proc. of the 17th Interna-
tional Conference, OPODIS 2013, Nice, France, pp. 98–113, 2013.

[32] U. Gadiraju, R. Kawase, S. Dietze, and G. Demartini, “Understanding
malicious behavior in crowdsourcing platforms: The case of online
surveys”, Proceedings of CHI, 2015.

[33] M. Kokkodis, and P. G. Ipeirotis, “Reputation Transferability in Online
Labor Markets”, Management Science, 2015.

[34] J. Fan, G. Li, B. C. Ooi, K. L. Tan, and J. Feng, “iCrowd: An Adaptive
CS Framework”, Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pp. 1015–1030, 2015.

[35] J.M. Rzeszotarski, and A. Kittur, “Instrumenting the crowd: using
implicit behavioral measures to predict task performance”, Symposium
on User Interface Software and Technology - UIST ’11, 2011.

[36] J.M. Rzeszotarski, and A. Kittur, “CrowdScape: interactively visualizing
user behavior and output”, Proc. of the 25th annual ACM symposium
on User interface software and technology - UIST ’12, pp. 55-62, 2012.

[37] R. Buettner, “A Systematic Literature Review of CS Research from a
Human Resource Management Perspective”, IEEE 48th Hawaii Inter-
national Conference on System Sciences (HICSS), pp. 4609–4618, 2015.

[38] A. Tarable, A. Nordio, E. Leonardi, and M. Ajmone Marsan, “The
Importance of Being Earnest in Crowdsourcing Systems”, IEEE INFO-
COM, Hong Kong, April 2015.

[39] T. M. Cover and J. M. Thomas, “Elements of information theory,” 2nd
ed., John Wiley, 2005.

[40] G. Calinescu, C. Chekuri, M. Pál, J. Vondrák, “Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint,” SIAM Journal
on Computing, Vol. 40, No. 6, pp. 1740–1766, 2011.

Alberto Tarable (S’00-M’02) received the Laurea
degree (summa cum laude) in 1998 and the Ph.D.
degree in Electronic Engineering in February 2002,
both from Politecnico di Torino. From 2002 to 2012,
he worked as a researcher in the Department of
Electronics and Telecommunications of Politecnico
di Torino. From 2012, he holds a research position in
the Institute of Electronics, Computer and Telecom-
munication Engineering of the Italian National Re-
search Council. His research interests include MIMO
systems and space-time coding, anytime coding and

coding schemes for relay channels.

Alessandro Nordio (S’00-M’03) is a Researcher
with the Institute of Electronics, Computer and
Telecommunication Engineering of the Italian Na-
tional Research Council. In 2002 he received the
Ph.D. in Telecommunications from EPFL, Lausanne,
Switzerland. From 2002 to 2009 he was a post-
doc researcher with the Electronic Department of
Politecnico di Torino, Italy. His research interests
are in the field of signal processing, wireless sensor
networks, theory of random matrices, and crowd-
sourcing systems.

Emilio Leonardi (S94M99SM09) received the Dr.
Ing. degree in electronics engineering and Ph.D.
degree in telecommunications engineering from the
Politecnico di Torino, Turin, Italy, in 1991 and 1995,
respectively. He is currently an Associate Professor
with the Department of Electronics, Politecnico di
Torino, Turin, Italy. His research interests include
performance evaluation of computer networks and
distributed systems, dynamics over social networks,
and human centric computation

Marco Ajmone Marsan holds a double appoint-
ment as Full Professor at the Department of Elec-
tronics and Telecommunications of the Politecnico
di Torino (Italy), and Research Professor at IMDEA
Networks Institute (Spain). From 2003 to 2009 he
was Director of the Institute for Electronics, Infor-
mation and Telecommunication Engineering of the
National Research Council of Italy. From 2005 to
2009 he was Vice-Rector for Research, Innovation
and Technology Transfer at Politecnico di Torino. He
is a Fellow of the IEEE and he is listed by Thomson-

ISI amongst the highly-cited researchers in Computer Science. He has been
principle investigator for a large number of research contracts with industries,
and coordinator of several national and international research projects.

14

IEEE Transactions on Parallel and Distributed Systems,Year: 2017, Volume: 28, Issue: 2

