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size, the first part alone doesn’t require a highly scalable system 
for operation. The second part, however, is dependent on the 
size of the population. Each loop iteration (Fig. 2, steps 17-23) 
can be executed independently for each user and is thus easily 
parallelizable and as such suitable for porting to e.g., a 
map-reduce framework [30], [34]. In this way the data can be 
split into multiple partitions, which are processed in parallel, 
while the final reduce step requires only a summation of the 
interest score. Such system is feasible to work also in real time, 
where some additional stream processing techniques for 
real-time applications [31] must be applied. The system was 
tested on data set available to us and the algorithm is written in 
manner that enables simple parallelization, however the 
detailed memory consumption analysis and scalability 
efficiency determination is left for future work. 

V. RESULTS AND DISCUSSION 

To demonstrate the usability of our implementation of the 
proposed framework we have conducted several measurements 
of the IS in different time periods and for different number of 
topics. The value of the IS answers the question about which 
topic is more popular or more interesting to the users. 

First we calculated the values of IS for 41 randomly chosen 
topics. Their IS values for the period from 1st October 2015 to 
20th December 2015 are shown in Fig. 4. The IS in Fig. 4 
enables topic interest comparison in term of quantity, but fails 
to linearly represent the quotients between them. For example, 
in the graph we see, that the IS of “China” is about twice as high 
as IS of “Hungary”, but we cannot conclude that China was 
twice as popular as Hungary, just that it was more popular than 
Hungary. 

The interest score through time analysis was performed on a 
different time scale. For the period from January to August 
2016, we analyzed the monthly popularity of several Slovenian 
political parties. This analysis shows the daily IS of a particular 
topic, in our case the interest in political parties (Fig. 5).  

We compared the calculated IS scores to the publicly 
available polling results, done by the Slovenian polling agency 
Ninamedia d.o.o. [29] that performs public opinion research by 
surveying people, using a sample of N=700. The results are 
published monthly in the form of a table with percentage of the 
population that would vote for particular party. The results for 
the year 2016 are listed in Table 1.  

Three parties were selected for the opinion measure analysis: 

 
Fig. 4. Interest scores of the topics for the whole population for the duration of the entire research period from 1st October 2015 to 20th December 
2015. The IS enables comparison of the public opinion to different topics. 

 
 
Fig. 5. Interest score (left axis) of the Slovenian political parties based on the entire population, together with scores obtained from a polling 
agency (Ninamedia, right axis) for the period between January and August 2016. 
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“NSi”, “SD” and “SDS”. According to the polling results in 
Table 1, the most popular party in Slovenia in 2016 till August 
(“SDS”) lost the first place to the “SD” party. “NSi” was 
selected because the popularity of the party is relatively 
constant. 

The calculated IS shows the trends of the increase of the 
popularity of “SD” and the decrease of the popularity of “SDS”. 
The calculated IS correctly shows the trends of popularity of 
the observed parties (rising “SD” and falling “SDS”), but fails 
to get their absolute ranking according to Table 1. However, the 
analysis shows that there is a correlation between the public 
opinion analysis performed by surveying people and the public 
IS estimated by the proposed system. 

The noticeable decline in IS for political parties in the period 
from 8th to 10th August presented in Fig. 6 needed detailed 
research. After inspecting the news for the mentioned period, 
we found out that in this period Slovenia won the first two 
medals at the Olympic Games in Rio de Janeiro. For example, 
on the 9th Slovenia won the first medal, which received 35% of 
the whole Slovenian TV viewers' population at that time. The 
next day Slovenia won the second medal. In the IS of political 
parties together with the IS for “gold medal” are shown. We 

notice the high IS for the topic “gold medal” and low IS for 
political parties in period from 8th to 10th August, especially on 
the 9th, followed by the decrease in IS for “gold medal” and 
increase in IS for political parties in period from 10th to 12th 
August.  

Next we analyzed the weekly IS of the topic “Enrollment 
into school”. Our aim was to check if the interest in this topic 
coincides with the actual enrollment in school for high school 
students. The weekly IS of topic “enrollment” for the period 
from February to August 2016 is shown in Fig 7. We notice 4 
major increases in the IS. The first increase in the first week of 
February coincides with the information day, when students 
visit schools that they are interested in. The second increase 
lasts from the last week of March to the first week of April. This 

Table 1. The percentages of people that would vote for a particular 
political party in each month in 2016. The sample size of the 
analysis is 700. Adapted from [29]. 
 

 Jan Feb Mar Apr May Jun Jul Aug

DESUS 4,8 3,8 3,5 4,6 3,4 3,5 4,6 3,1

NSi 5,3 3,2 4,1 5,7 4,3 5,3 4,8 6,8

SD 8,5 8,3 10,8 10,4 10,9 8,9 10,1 12,1

SDS 17,8 21,4 16,8 16,6 12,4 14,3 14,1 11,3

SMC 11,5 8,5 9,8 10,0 9,4 8,4 10,9 9,3

ZaAB 0,3 0,2 0,2 0,0 0,1 0,8 0,2 0,3

ZL 6,6 5,3 8,7 6,5 8,1 8,1 6,7 6,9

SLS 1,3 1,6 0,5 1,6 1,6 0,5 1,6 2,1

Rest 43,8 47,6 45,6 44,9 49,6 50,1 47,0 48,1

 

Fig. 6. Interest scores of the Slovenian political parties for the whole population for a research period from 6th August to 25th August 2016 with 
the IS for the “gold medal”. The decline in IS in period from 8th -10th August for political parties is accompanied by the massive increase in IS for 
topic “gold medal”. The decrease in IS for “gold medal” is then followed by the increase in IS for political parties. 

  
 

Fig. 7. Weekly interest scores of topic “enrollment” for the period 
from Feb till end of August 2016. The IS show four major increases of 
interest: in the first week of February, in the last week of March, in the 
first week of April, and in the first week of August. 



1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2017.2695371, IEEE
Transactions on Industrial Informatics

TII-16-1283    

 
 

9

period coincides with the period before the actual enrollment in 
schools that is at the beginning of April. The increase in the first 
week of August is a one-time event that occurred only in 2016, 
when students could for the first time buy the unified ticket for 
bus and train, which resulted in massive waiting lines for tickets, 
which likely resulted in the high interest in this topic. 

The presented results show that the IS obtained by the 
implemented system is correlated to public interest and opinion. 
For example, a daily IS for the topic of "gold medal" and 
weekly IS for the topic "enrollment" in Fig 7. correctly show 
the increased public interest in both topics. Also, the daily IS 
for the political parties during the one month period shows the 
trend that is in correlation with publicly available survey 
results. 

Nonetheless, despite demonstrating the feasibility of the 
proposed approach, it has to be mentioned that several 
assumptions were made during the current implementation of 
this system, which could affect its accuracy. One such 
asumption is that the context that is solely inferred from the 
spoken word drives the majority of the channel changes in users, 
as well as the rule-of-thumb intervals for metric calculation; 
accurate quantification of the effects of these assumptions is 
left for future work that will be highly interdisciplinary and 
multidisciplinary. for example, using a better psychological 
model of the user could prove beneficial for determining the 
state of the user with better accuracy. 

VI. CONCLUSION AND FUTURE WORK 

In this paper we presented a novel framework for public 
interest and opinion analysis based on IPTV user behavior. We 
presented the basic framework components and provided their 
desirable properties and functionalities. We further described a 
possible implementation of the framework in detail. The 
presented interest score was analyzed and the results showed its 
usability as the public interest measure. Some shortcomings of 
IS were identified and possible solutions to them were 
discussed. 

In the future work we will continue to focus on the 
crowd-sourced data collection and mining of the IPTV 
network-based event data. The research will be divided into 
small segments, described in the framework section. The first 
segment of the improvement of the system is in the data 
collection part, where program information will be added for 
broader range of transmissions. The second part of the future 
work will focus on improving the language model. The last part 
of the improvement is analysis of various evaluation 
algorithms.  

Another very important task left for future study is the 
mapping of the implicitly collected public interest measure into 
a credible and reliable public opinion measure. All of the 
abovementioned future tasks involve interdisciplinary and 
multidisciplinary research. 
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