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Abstract—Spatial data have wide applications, e.g., location-based services, and geometric range queries (i.e., finding points inside
geometric areas, e.g., circles or polygons) are one of the fundamental search functions over spatial data. The rising demand of
outsourcing data is moving large-scale datasets, including large-scale spatial datasets, to public clouds. Meanwhile, due to the concern
of insider attackers and hackers on public clouds, the privacy of spatial datasets should be cautiously preserved while querying them at
the server side, especially for location-based and medical usage. In this paper, we formalize the concept of Geometrically Searchable
Encryption, and propose an efficient scheme, named FastGeo, to protect the privacy of clients’ spatial datasets stored and queried at
a public server. With FastGeo, which is a novel two-level search for encrypted spatial data, an honest-but-curious server can efficiently
perform geometric range queries, and correctly return data points that are inside a geometric range to a client without learning sensitive
data points or this private query. FastGeo supports arbitrary geometric areas, achieves sublinear search time, and enables dynamic
updates over encrypted spatial datasets. Our scheme is provably secure, and our experimental results on real-world spatial datasets in
cloud platform demonstrate that FastGeo can boost search time over 100 times.
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1 INTRODUCTION

Searchable Encryption (SE) [1] is a promising tech-
nique to enable search functionalities over encrypted
data at a remote server (e.g., a public cloud) without de-
cryption. Specifically, with SE, a client (e.g., a company)
can retrieve correct search results from an honest-but-
curious server without revealing private data or queries.
A sequence of SE schemes [1]–[7] have been proposed,
where most of them focus on common SQL queries, such
as keyword search and range search. Recently, a few SE
schemes [8]–[11] have drawn their attentions particularly
to geometric range queries over spatial datasets, where a
geometric range query retrieves points inside a geometric
area, such as a circle or a polygon [12]. However, how
to enable arbitrary geometric range queries with sub-
linear search time while supporting efficient updates
over encrypted spatial data remains open.

Spatial data have extensive applications in location-
based services, computational geometry, medical imag-
ing, geosciences, etc., and geometric range queries are
fundamental search functionalities over spatial datasets.
For instance, a client can find friends within a circular
area in location-based services (e.g., Facebook); a medical
researcher can predict whether there is a dangerous
outbreak for a specific virus in a certain geometric area
(e.g., Zika in Brazil) by retrieving patients inside this
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area. Many companies, such as Yelp and Foursquare,
are now relying on public clouds (e.g., Amazon Web
Services, AWS) to manage their spatial datasets and
process queries. However, due to the potential threats
of inside attackers and hackers, the privacy of spatial
datasets in public clouds should be carefully taken care
of, particularly in location-based and medical applica-
tions. For instance, a compromise of AWS by an inside
attacker or hacker would put millions of Yelp users’
sensitive locations under the spotlight.

Different from keyword search relying on equality
checking and range search depending on comparisons,
a geometric range query over a spatial dataset essen-
tially requires compute-then-compare operations [11]. For
example, to decide whether a point is inside a circle, we
calculate a distance from this point to the center of a
circle, and then compare this distance with the radius of
this circle; in order to verify whether a point is inside
a polygon, we compute the cross product of this point
with each vertex of this polygon, and compare each cross
product with zero (i.e., positive or negative) [13].

Unfortunately, this requirement of compute-then-
compare operations makes the design of a SE scheme
supporting geometric range queries more challenging,
since current efficient cryptographic primitives are not
suitable for the evaluation of compute-then-compare op-
erations in ciphertext. More specifically, Pseudo Random
Function (PRF) [14] can only enable equality checking;
Order-Preserving Encryption [15] solely supports com-
parisons; Partially Homomorphic Encryption (e.g., Pail-
lier [16]) can only compute additions (or multiplications).
BGN [17] calculates additions and at most one multi-
plication on encrypted data. On the other hand, Fully
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Homomorphic Encryption (FHE) [18] could securely
evaluate compute-then-compare operations in principle.
However, the evaluation with FHE does not reveal search
decisions (such as inside or outside) over encrypted data,
which limits its usage in search.

In this paper, we formalize the concept of Geometri-
cally Searchable Encryption (GSE), which is evolved from
the definitions of SE schemes but focuses on answering
geometric queries. We propose a GSE scheme, named
FastGeo, which can efficiently retrieve points inside a
geometric area without revealing private data points
or sensitive geometric range queries to a honest-but-
curious server. Instead of directly evaluating compute-
then-compare operations, our main idea is to convert
spatial data and geometric range queries to a new form,
denoted as equality-vector form, and leverage a two-level
search as our key solution to verify whether a point is
inside a geometric range, where the first level securely
operates equality checking with PRF and the second level
privately evaluates inner products with Shen-Shi-Waters
encryption (SSW) [19]. The major contributions of this
paper are summarized as below:
• With the embedding of a hash table and a set of link

lists in our two-level search as a novel structure for
spatial data, FastGeo can achieve sublinear search
and support arbitrary geometric ranges (e.g., circles
and polygons). Compared to recent solutions [8],
[11], FastGeo not only provides highly efficient
updates over encrypted spatial data, but also im-
proves search performance over 100x.

• We formalize the definition of GSE and its leakage
function, and rigorously prove data privacy and
query privacy with indistinguishability under se-
lective chosen plaintext attacks (IND-SCPA) [19].

• We implement and evaluate FastGeo in cloud plat-
form (Amazon EC2), and demonstrate that Fast-
Geo is highly efficient over a real-world spatial
dataset. For instance, a geometric range query over
49,870 encrypted tuples can be performed within
15 seconds, and an update only requires less than
1 second on average.

2 RELATED WORK
OPE [15] and some SE schemes [20]–[22] that support

comparisons, can perform rectangular range queries by
applying multiple dimensions. However, those exten-
sions do not work with other geometric range areas, e.g.,
circles and polygons in general. Wang et. al. [9] proposed
a scheme, which particularly retrieves points inside a
circle over encrypted data by using a set of concentric
circles. Zhu et al. [10] also built a scheme for circular
range search over encrypted spatial data. Unfortunately,
these two schemes exclusively work for circles, and do
not apply to other geometric areas.

Ghinita and Rughinis [8] designed a scheme, which
supports geometric range queries by using Hidden Vec-
tor Encryption [21]. Instead of encoding a point with a
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Fig. 1: The system model of a GSE scheme.

binary vector of T 2 bits, where T is the dimension size,
it leverages a hierarchical encoding, which reduces the
vector length to 2 log2 T bits. However, its search time
is still linear with regard to the number of tuples in
a dataset, which not only runs slowly over large-scale
datasets but also disables efficient updates.

Our recent work [11] presents a scheme that can
operate arbitrary geometric range queries. It leverages
Bloom filters [23] and their properties, where a data point
is represented as a Bloom filter, a geometric range query
is also formed as a Bloom filter, and the result of an inner
product of these two Bloom filters correctly indicates
whether a point is inside a geometric area. Its advanced
version with R-trees [24] can achieve logarithmic search
on average. Although it also utilizes SSW as one of the
building blocks, its tree-based index and unique design
with Bloom filters are completely different from the novel
two-level index introduced in this paper, where these
significant differences prevent this previous scheme from
supporting efficient updates and practical search time.

Some other works [25]–[28] study secure geometric
operations between two parties (e.g., Alice and Bob),
where Alice holds a secret point and Bob keeps a private
geometric range. With Secure Multi-party Computation
(SMC), Alice and Bob can decide whether a point is
inside a geometric range without revealing secrets to
each other. However, the model of these studies are
different from ours (i.e., Alice and Bob both provide
individual private inputs, while a client in our model
has all the private inputs but the server has no private
inputs). Besides, SMC introduces extensive interactions.

3 PROBLEM STATEMENT
System Model. There are two entities, including a

client and a server, in our model (in Fig.1). The client
is a company or an organization, who stores its spatial
datasets on the server. Each tuple in a spatial dataset
is essentially a point. In addition, it also wants to per-
form geometric range queries over its outsourced spatial
dataset. The purpose of a geometric range query is to
retrieve points inside this geometric range. The server is
operated by a cloud service provider, and it offers data
storage and query processing services. By leveraging
these data services, the client can reduce its local cost.

The server is honest-but-curious, where it provides
data services but it is curious and trying to reveal the
client’s spatial data (i.e., what points are stored) or
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geometric range queries (i.e., what queries are searched).
As a result, the client encrypts its spatial datasets and
geometric range queries before handling them to the
server. Only the client itself has the secret key for en-
cryption/decryption. Meanwhile, the server is required
to correctly perform geometric range search on encrypted
spatial data without decryption, and it should return
search results (i.e., the ciphertexts of points that are
inside a geometric range query) to the client.

Definition 1: Definition of GSE. A geometrically
searchable encryption includes five polynomial-time algorithms
Π = {GenKey,BuildIndex,Enc,GenToken,Query} such that:
• sk GenKey(1λ): is a probabilistic algorithm that is

run by a client. It takes a public security parameter λ
as input, and outputs a secret key sk.

• Γ ← BuildIndex(D,m): is a deterministic algorithm
that is run by a client. It takes a spatial dataset D =
{D1, ..., Dn} and a public parameter m as input, and
outputs an index Γ.

• Γ∗ ← Enc(Γ, sk): is a probabilistic algorithm that is
run by a client. It takes an index Γ and a secret key sk
as input, and outputs an encrypted index Γ∗.

• tkQ ← GenToken(Q, sk,m): is a probabilistic algo-
rithm that is run by a client. It takes a geometric range
query Q, a secret key sk and a public parameter m as
input, and outputs a search token tkQ.

• IQ ← Query(Γ∗, tkQ): is a deterministic algorithm that
is run by a server. It takes an encrypted index Γ∗ and
a search token tkQ, and outputs a set of identifiers IQ,
where if Di ∈ Q, then Ii ∈ IQ, for i ∈ [1, n].

In the above definition, each tuple Di, for i ∈ [1, n], in
a spatial dataset D is a point of a data space ∆α

T , where
α denotes the number of dimensions and T is the size
of each dimension. We assume each dimension has the
same size, and its range is from [0, T − 1]. Without loss
of generality, we also assume α = 2, then each point can
be described as Di = (di,1, di,2), where di,1 and di,2 are
the values of this point in x-dimension and y-dimension
respectively, and di,1, di,2 ∈ [0, T − 1]. A geometric range
query Q is a range within the data space, which can be
represented as Q ⊆ ∆α

T . If a point Di is inside a query
Q, we denote it as Di ∈ Q; otherwise, we have Di /∈ Q.

This definition is a symmetric-key GSE, since the en-
cryption of an index and the generation of a search
token both use the same secret key. The objective of
a GSE scheme is to build an encrypted index of a
spatial dataset in order to enable search functionalities
in ciphertext, and eventually output a set of identifiers
indicating encrypted points that associate to a query.
With those identifiers, the server can return correspond-
ing encrypted points, and the client can learn search
result in plaintext by decrypting encrypted points locally.
The encryption and decryption of each tuple itself can
be delivered by another additional layer of standard
CPA-secure encryption (e.g., AES-CBC-256), which can
be ignored in a searchable encryption. The correctness
of a GSE scheme can be formally shown as below:

Definition 2: Correctness of GSE. We say a GSE
scheme Π is correct if for all λ ∈ N, all sk output by
GenKey(1λ), all Di ∈ ∆α

T , all Γ output by BuildIndex(D, σ),
all Γ∗ output by Enc(Γ, sk), all Q ⊆ ∆α

T , and all tkQ output
by GenToken(Q, sk, σ), we have
• If Di ∈ Q: Query(Γ∗, tkQ) = IQ, where Ii ∈ IQ;
• If Di /∈ Q: Pr[Query(Γ∗, tkQ) = IQ, where Ii /∈ IQ] ≥

1− negl(λ)

where negl(λ) is a negligible function [14] in terms of λ.
This correctness implies that the scheme will definitely

return the identifier of the ciphertext of a tuple Di, if this
point is inside a query Q; and will return the identifier of
the ciphertext of a tuple Di with a negligible probability
(i.e., a probability that is significantly small and can be
ingored in practice), if this point is outside a query Q.

Security Objectives. The security of GSE is to prevent
the server from learning spatial data and geometric
queries, while enabling geometric range search. Specif-
ically, the server should not learn the content of data
points, or reveal the vertices of a polygon or the center
and radius of a circle that the client is searching for.

On the other hand, the server is allowed to obtain
certain information about a spatial dataset in order to
operate queries efficiently and functionally. For instance,
the server learns the total number of tuples in a spatial
dataset (i.e., size pattern); it reveals which identifiers
are touched or retrieved by a search token (i.e., access
pattern). Those leakage can be formally included in a
leakage function L [2]. We will first prove our security
under selective chosen plaintext attacks with this leakage
function, and then further analyze our privacy by con-
sidering an even stronger attacker who can carry statistic
attacks. Details will be described in Sec. 6.

4 PRELIMINARIES
Pseudo Random Function (PRF). A PRF [14] generates

pseudo random outputs that are computationally indis-
tinguishable from random outputs.

Definition 3: Let F : {0, 1}n × {0, 1}n → {0, 1}n be
an efficient keyed function. We say F is a pseudo random
function if for all probabilistic polynomial-time adversary A,
there exists a negligible function negl such that:∣∣∣Pr[AFk(·)(1n) = 1]− Pr[Afn(·)(1n) = 1]

∣∣∣ ≤ negl(n),

where key k ← {0, 1}n is chosen uniformly at random and
fn is chosen uniformly at random from the set of functions
mapping n-bit strings to n-bit strings.

By leveraging PRF, we can perform equality checking
on encrypted data. Specifically, given two messages m0

and m1, their outputs, [m0] and [m1], are the same, if and
only if m0 = m1. We use Init to denote the algorithm to
initialize a random key in PRF, and leverage GetBits to
present the algorithm to get pseudo random outputs.

Shen-Shi-Waters Encryption (SSW). SSW [19] can
evaluate whether the inner product of two vectors is zero
without leaking privacy. Concretely, given two vectors
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~u = (u1, ..., um) and ~v = (v1, ..., vm), SSW generates a
ciphertext [~u] with vector ~u and a token [~v] with vector
~v. The evaluation on [~u] and [~v] indicates whether the
inner product of ~u and ~v is zero as{

if < ~u,~v >= 0, SSW.Query([~u], [~v]) = 1
otherwise, Pr[SSW.Query([~u], [~v]) = 0] ≥ 1− negl(λ)

without revealing vector ~u nor ~v, where < ~u,~v >=∑m
i=1 ui · vi is the inner product of two vectors. Its

security can be proved with indistinguishability under
Selective Chosen-Plaintext Attacks (IND-SCPA) [19], and
the algorithms of SSW are briefly presented as below
• Setup(1λ): Given a security parameter λ, output a

secret key sk.
• Enc(sk, ~u): Given sk and a vector ~u, where ~u =

(u1, ..., um), output a ciphertext [~u].
• GenToken(sk,~v): Given sk and a vector ~v, where

~v = (v1, ..., vm), output a token [~v].
• Query([~u], [~v]): Given ciphertext [~u] and token [~v],

output 1 if < ~u,~v >= 0 and output 0 otherwise.
The encryption time and token generation time are

both O(m), and the size of a ciphertext and the size of a
token are also both O(m), where m is the vector length.

5 FASTGEO: AN EFFICIENT GSE
Instead of directly running compute-then-compare op-

erations, a straightforward design would be splitting
compute-then-compare operations into two steps, where
the server computes (e.g., computes a distance) over
encrypted data with BGN [17], and then a client locally
operates comparisons in plaintext. However, the huge
amount of local decryptions at the client side would
significantly limit search performance. Besides, the com-
munication overhead is equivalent to downloading the
entire dataset, which is obviously not practical.

Overview of FastGeo Design. To overcome those
limitations, we transform geometric range queries and
data points to a different form, denoted as equality-
vector form, such that performing equality checking and
evaluating inner products together can correctly and
efficiently answer arbitrary geometric range queries. In
order to achieve efficient evaluations while still main-
taining strong privacy guarantee, we utilize PRF to se-
curely enable equality checking, and we leverage SSW
to privately verify whether inner products are zeros.
In addition, a dictionary (implemented as a hash table)
is combined with the use of PRF to achieve sublinear
search. From the high level, our design can be interpreted
as a two-level search, where the first level relies on equal-
ity checking and the second level depends on evaluating
inner products. Moreover, link lists are applied to the
second level to support efficient updates.

5.1 Data and Queries in Equality-Vector Form
We use a set of examples to show how to transform

data and queries to equality-vector form (in plaintext),
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Fig. 2: A spatial dataset and a triangular range query.
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→ (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
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Points Dictionary Link Lists

Dictionary Link Lists

Fig. 3: A dataset before & after converting the form.

such that compute-then-compare operations can be re-
placed with a combination of equality checking and
inner products. Meanwhile, we also demonstrate how
to embed a dictionary and a set of link lists to index a
spatial dataset. As shown in Fig. 2, we have a spatial
dataset with 5 data points and a triangular range query
Q. We assume the data space in this example is ∆2

10, i.e.,
two dimensions and each has a size of T = 10, where
x ∈ [0, 9] and y ∈ [0, 9]. Only integers are considered
in this example. Without loss of generality, a triangle is
leveraged here as an example. Other geometric objects,
such as circles and rectangles, are also compatible.

Based on the distinct values of these data points in x-
dimension, we first build a dictionary (as illustrated in
Fig. 3), where each element of this dictionary contains a
distinct x-value. For each element, we also create a link
list to represent its corresponding y-values, where each
node in the link list stores a y-value. Obviously, the size
of each link list depends on the number of data points
for a given x-value. For instance, given x = 6, there are
two data points (6, 2) and (6, 4), thus, the size of its link
list is 2. In addition, a permutation function will also be
applied to ensure nodes in each list are in random order.
Then, we represent every y-value in each link list as a
vector, where the length of each vector is 10 (since T =
10). Specifically, if y = i, then the component at index i
in the vector is set as 1 while others are all assigned 0s.
The index of a component starts from 0 and ends at 9.
For example, if y = 3, its vector is (0, 0, 0, 1, 0, 0, 0, 0, 0, 0),
where only the component at index 3 is 1.

Given a geometric range query Q in Fig. 2, we first
enumerate a set of all the possible points (of the data
space) that are inside this geometric range query, and
use this set to represent a geometric range query. Note
that this enumeration step is trivial for any geometric
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Fig. 4: A query before & after converting the form.

x = 5 false
x = 6 true

< (0, 0, 1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 1, 1, 1, 1, 1, 1, 1) >= 0
< (0, 0, 0, 0, 1, 0, 0, 0, 0, 0), (1, 0, 0, 1, 1, 1, 1, 1, 1, 1) >= 1 != 0

x = 7 false

Fig. 5: An example of search in the equality-form form.

range in plaintext [12]. Next, we generate a set of x-
subqueries based on the x-values of these possible points,
and compute a y-subquery for each given x-subquery
to cover all these possible points (in Fig. 4). Specifically,
each x-subquery is still based on a distinct x-value, but
we use a vector to represent each y-subquery, where the
component at index i in the vector is set as 0 if y = i
is covered by this geometric range query for a given
x. For instance, when x = 6, y ∈ [1, 2] is covered by
Q, therefore, its corresponding y-subquery in the vector
format is (1, 0, 0, 1, 1, 1, 1, 1, 1, 1), where components from
index 1 to index 2 are set as 0s and others are 1s.

5.2 Search with Equality-Vector Form
With this equality-vector form, we can still operate ge-

ometric range queries correctly. Specifically, given query
Q, we first search each x-subquery in the dictionary.
Once we find a match in terms of x, we continue to
evaluate an inner product of its y-subquery with a node
in a corresponding link list. If this inner product is 0,
it indicates a data point is inside the geometric range
query. For instance, as shown in Fig. 5, x = 5 and x = 7
as x-subqueries are not inside the dictionary via equality
checking; once we find a match in the dictionary using
x = 6, we continue to use its y-subquery to evaluate an
inner product with every node in the link list of x = 6.
Essentially, we can also think our search process as a
sweeping algorithm, where it sweeps all the associated
x-values (i.e., vertical lines) one after another. Sweeping
algorithms are commonly used in computational geom-
etry over spatial data for various problems [12].

5.3 Apply Encryption Primitives
With this search in equality-vector form, we can apply

PRF to the equality part (i.e., first level) and lever-
age SSW to the vector part (i.e., second level) of data
and queries to protect privacy while enabling geometric

◦ DataToEnhVector(x, y,m): Given a first-level value x, a
second-level value y and vector length m, initialize a
vector ~ue = (u0, ..., um). For 0 ≤ i ≤ m− 1, if i = y,
ui = H(x); otherwise, ui = 0, where H(·) is collision-
resistant. Set um = −1, and return ~ue.

◦ QueryToEnhVector(x, r,m): Given a first-level value x, a
second-level subquery r and vector length m, initialize
a vector ~ve = (v0, ..., vm). For 0 ≤ i ≤ m− 1, if i ∈ r,
vi = 1; otherwise, vi = 0. Set vm = H(x), where H(·)
is collision-resistant, and return ~ve.

Fig. 6: Two algorithms generating enhanced vectors

range search. Moreover, a permutation function [14] with
fresh randoms should be implemented to each query,
such that the sweeping of the encrypted first-level values
in each query will follow a random order.

The use of PRF, SSW and a permutation function
with equality-vector form can fulfill search function-
ality and initial security, but another significant issue
should still be solved. Specifically, the generation of a
x-subquery and its corresponding y-subquery are inde-
pendent, where a curious server could freely change
the search ability of a given query to another one by
mismatching different encrypted x-subqueries with dif-
ferent encrypted y-subqueries (i.e., using an encrypted
y-subquery [~vi] for a different encrypted x-subquery [xj ],
where i 6= j). For instance, given a search token tkQ =
{{[x1], [~v1]}, {[x2], [~v2]}} of a geometric range query Q,
the server could mismatch and query it as

tkQ′ = {{[x1], [~v2]}, {[x2], [~v1]}},
which may leak different access patterns (e.g., different
encrypted data points may be retrieved compared to the
use of the original search token tkQ). This type of issues
is also referred to as token collusion in some previous SE
schemes [19], [20], [29].

To prevent token collusion, we propose an enhanced
vector form, where an encrypted y-subquery can only
be correctly evaluated with its encrypted x-subquery but
not others. The idea of this enhancement is to embed
a first-level value to the vector form of a second-level
value. The algorithms to generate enhanced vectors are
described in Fig. 6. For instance, given a data point (6, 2),
its y-value in the enhanced vector form is

~ue = (0, 0, H(6), 0, 0, 0, 0, 0, 0, 0,−1)

Correspondingly, given an x-subquery x = 6 and its y-
subquery y ∈ [1, 2], its y-subquery is

~ve = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, H(6))

It is obvious to see that the inner product of the two
enhanced vectors ~ue and ~ve is zero if and only if the inner
product of the two original vectors ~u and ~v is zero.

5.4 Details of FastGeo
Finally, with PRF, SSW and the enhanced vector form,

we build FastGeo, where the details of each algorithm
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� GenKey(1λ): Given λ, the client computes skp ← PRF.Init(1λ), sks ← SSW.Setup(1λ), and outputs sk = {skp, sks}.
� BuildIndex(D,m): Given D = {D1, ..., Dn} and m, the client initializes Γ as null. For Di = (di,1, di,2), i ∈ [1, n], it computes
• ~ui ← DataToEnhVector(di,1, di,2,m);
• If HashTable.Find(Γ, di,1) is null, calculates e = di,1, list ← LinkList.Init(), list ← LinkList.Append(list, ~ui), Γ ←

HashTable.Insert(Γ, {e, list});
• Else if HashTable.Find(Γ, di,1) is not null, evaluates list← HashTable.Find(Γ, di,1), list← LinkList.Append(list, ~ui);

and finally it permutes nodes in each list, and outputs an index Γ.
� Enc(sk,Γ): Given sk = {skp, sks} and Γ, the client initializes Γ∗ as null. For {ej , listj} ∈ Γ, where 1 ≤ j ≤ w and w is the
size of index Γ, the client computes
• [ej ]← PRF.GetBits(ej , skp) and list∗j ← LinkList.Init(),
• For ~uj,k ∈ listj , where 1 ≤ k ≤ listj .size(), calculates [~uj,k]← SSW.Enc(~uj,k, sks), list∗j ← LinkList.Append(list∗j , [~uj,k])
• Γ∗ ← HashTable.Insert(Γ∗, {[ej ], list∗j})

and finally it outputs an encrypted index Γ∗.
� GenToken(sk,Q,m): Given sk = {skp, sks}, Q and m, the client computes a set SQ ← Enumerate(Q,∆2

T ), where SQ =
{{ei, ri}| for 1 ≤ i ≤ q1} and q1 is the size of Q in x-dimension. For each {ei, ri} ∈ SQ, it calculates

~vi ← QueryToEnhVector(ei, ri,m), [~vi]← SSW.GenToken(~vi, sks), [ei]← PRF.GetBits(ei, skp), tki = {tkp,i, tks,i} = {[ei], [~vi]}
It outputs tkQ = {tki| for 1 ≤ i ≤ q1}, permutes it as tkQ ← Permute(tkQ, γ) with a fresh random γ, and finally returns tkQ.
� Query(Γ∗, tkQ): Given Γ∗ and tkQ, where tkQ = {tki| for 1 ≤ i ≤ q1}, the server initializes IQ as null. For each tki =
{tkp,i, tks,i}, it evaluates HashTable.Find(Γ∗, tkp,i),
• If HashTable.Find(Γ∗, tkp,i) is not null, computes list∗ ← HashTable.Find(Γ∗, tkp,i), flagk ← SSW.Query([~uk], tks,i),

where [~uk] ∈ list∗, for 1 ≤ k ≤ list∗.size(). For each flagk, if it is true, the server computes IQ = IQ ∪ Ik, where Ik is
the identifier associated with [~uk].

and finally the server outputs a set of identifiers IQ.

Fig. 7: Details of FastGeo.

are presented in Fig. 7. Some standard hash table
functions, including HashTable.Find and HashTable.Insert,
and standard link list functions, including LinkList.Init
and LinkList.Append, are utilized as sub-algorithms in
BuildIndex. We skip the details of those standard func-
tions, since they are commonly known.

In GenToken, given a query Q, the client first enumer-
ates all the possible points inside Q from data space
∆2
T , and represents them as a set SQ = {{ei, ri}| for 1 ≤

i ≤ q1}, where ei is a distinct x-value in Q, ri is the
range of Q given ei, and q1 is the size of this query
in x-dimension. For each {ei, ri}, the client computes
a sub-token tki = {tkp,i, tks,i}, where tkp,i (denoted
as the first piece of tki) will be leveraged for equality
checking and tks,i (referred to as the second piece of tki)
will be used for inner product evaluation. Sub-algorithm
QueryToEnhVector is implemented to convert each ri to
its enhanced vector form. Search token tkQ is a set of
sub-tokens {tki| for 1 ≤ i ≤ q1}. A permutation function
Permute, as we mentioned, is leveraged to randomly
permute the order of sub-tokens in tkQ.

Once the server has a search token tkQ, it takes
each sub-token tki = {tkp,i, tks,i} to check if
there is a match in an encrypted index Γ∗ by
evaluating HashTable.Find(Γ∗, tkp,i). If the return of
HashTable.Find(Γ∗, tkp,i) is not null (i.e., it returns a
link list), the server evaluates each node [~uk] in this
link list with SSW.Query([~uk], tks,i). If the return of
SSW.Query([~uk], tks,i) is true, the server adds a corre-
sponding identifier Ik to set IQ. Finally, the server out-

puts IQ after evaluating all the sub-tokens.
Correctness. Due to the correctness of a hash table,

PRF and SSW, if a point is inside a geometric range,
FastGeo returns its corresponding identifier Ii since

Pr[Ii ∈ IQ|Di ∈ Q] = 1

where IQ ← Query(tkQ,Γ
∗). On the other hand, due to

the negligible errors introduced by a hash function and
the evaluation of SSW, if a point is not inside a geometric
range, our scheme will return identifier Ii with

Pr[Ii ∈ IQ|Di /∈ Q] ≤ negl(λ)

The detailed analysis is presented in Appendix. This
probability is negligible and can be ignored in practice.
For instance, when the hash function is SHA-1 (i.e., 160
bits) and security parameter (i.e., key bit length) λ = 80,
this probability is only max{ 1

280 ,
1

2160 } ≈ 8.27× 10−25.
Arbitrary Geometric Range. Our design permits geo-

metric range queries with arbitrary shapes, e.g., circles,
polygons, etc. The reason is that we represent any ge-
ometric range as a set of possible points, and the later
encryption on this set and evaluation on its encrypted
version are independent of the original geometric shape.
This property also prevents the server from learning
which type of geometric shapes a client is querying.

Sublinear Search. Since a dictionary can be imple-
mented as a hash table, where finding whether there
is a match in the first level requires O(1). Evaluating a
node in the second level with one instance of SSW.Query
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requires O(m), where m is the length of a vector. There-
fore, the overall search time of a geometric range query
is O(mτ), where τ is the number of SSW.Query instances
the server needs to evaluate. Compared to linearly query-
ing all the n encrypted data points in the equality-vector
form with O(nm), τ is clearly sublinear to n.

In terms of encryption time, encrypting a dictionary
with PRF requires O(w), where w is the number of
elements in the dictionary. There are n nodes in total
in all the w link lists, and each node requires O(m)
encryption time with SSE.Enc, the time to encrypt all the
nodes needs O(nm). Therefore, the total encryption time
spent on our index is O(nm), since O(nm+w) = O(nm),
where w ≤ n. The storage cost of our encrypted index
is O(nm). Each instance of SSW.GenToken takes O(m)
to generate a second piece of a sub-token and each
PRF.GetBits takes O(1) to output a first piece of a sub-
token, the overall token generation time per query is
O(mq1), where q1 is the size of a query in the first level.

Optimized Token Generation. One thing we can
observe is that the generation of some second pieces
in a search token may be unnecessary. Specifically, a
second piece of each sub-token will only be applied to a
search process if its first piece outputs a positive match.
Therefore, if we separate our two-level search into two
phases and allow one round of client-server interaction
between the two phases, then a client will generate a
second piece if and only if the search result of its first
level is positive, which can optimize the overall token
generation time. The optimized token generation time
is reduced to O(mζ + q1), where ζ is the number of
positives in the first level and ζ ≤ q1. Compared to
the original O(mq1), this optimization will be extremely
effective, especially when ζ � q1.

Efficient Updates. Efficient updates (including insert,
modify and delete) are also available in FastGeo, where
the update logic is as the same as those operations in a
dictionary and link lists in plaintext. It is because FastGeo
only encrypts elements in a dictionary and nodes in link
lists, but keeps structures unchanged. In other words,
the change of one encrypted data point in the structure
does not require re-encrypting any other encrypted data
points. A geometric range query with a minimal size
of one possible point can be used to find the updating
position for one update in our two-level index. The
running time of one update operation is O(mτ ′) (i.e.,
O(mτ ′) to find the updating node, and O(1) to update
pointers and a dictionary), where τ ′ is the size of the link
list this update applies to.

6 SECURITY ANALYSIS
6.1 Leakage Function

As we mentioned, a server is allowed to learn some
information to facilitate search functionalities over en-
crypted data. Concretely, given a spatial dataset and
a sequence of geometric range queries, besides public
information such as security parameter λ, data space ∆α

T

and public parameter m, the following information are
granted to a curious server:
• Size pattern (φ1): the number of points in a spatial

dataset.
• Structure pattern (φ2): the dictionary size (i.e., the

number of elements) of a spatial dataset; and for
each element in the dictionary, its link list size (i.e.,
the number of nodes).

• First-level query-size pattern (φ3): the size of a geo-
metric range query in the first level.

• First-level search pattern (φ4): the number of the same
first-level values that a geometric range query has
related to a previous query.

• Access pattern (φ5): which identifiers are touched,
and which identifiers are retrieved for a given query.

By “touched", it means a data point is matched in the
first level, but it does not satisfy in the second level for
a given query. By “retrieved", it indicates a data point
is not only matched in the first level but also satisfied
in the second level. There are also identifiers that are
neither touched nor retrieved. With access pattern, the
server also discovers the size of results (i.e., how many
encrypted data points are retrieved) for a given query.

Those above patterns should be rigorously captured
by a leakage function L, which is commonly used in the
security analysis of a SE scheme. For size pattern, the
input of it to L is an index Γ of a spatial dataset D, and
the output is an integer, φ1 = n ← L(Γ), which is the
total number of points. For structure pattern, the input
is still Γ, and the output can be formulated as a vector,
where the length of this vector is the dictionary size w,
and the value of each component in this vector represents
the size of a link list. Thus, we have

φ2 = (s1, s2, ..., sw)← L(Γ)

where si = listi.size(), for 1 ≤ i ≤ w, and
∑w
i=1 si = n.

In terms of first-level query-size pattern, given a geo-
metric range query Q as an input to L, the output can
be described as an integer, φ3 = q1 ← L(Q), which is
the size of Q in the first level (i.e., the number of sub-
tokens generated by Q), The input of first-level search
pattern to L includes a geometric range query Q and a set
of previous geometric range queries Q′ = {Q′1, ..., Q′t},
where t is the number of previous geometric range
queries. The output of it can be described as

φ4 = (η1, η2, ..., ηt)← L(Q,Q′)

where ηi indicates the number of same first-level values
that Q and Q′i have. Particularly, if ηi = 0, it indicates Q
does not have any same first-level values with Q′i, and
if ηi = φ3 = q1, it implies all the first-level values of Q
are included in Q′i, and it is the maximal value that ηi
could achieve.

To formalize access pattern for one geometric range
query, the input of it to L includes an index Γ and a
query Q, and its output can be represented as a vector,
where the length of this vector is the number of data
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points n, and the value of each component in this vector
is either 0, 1, or 2 (indicating an identifier is not touched,
touched, or retrieved respectively). Then, we have

φ5 = (β1, β2, ..., βn)← L(Γ, Q)

where βi ∈ {0, 1, 2}, for 1 ≤ i ≤ n.

6.2 Formal Security Definitions
We define our security definition with a game-based

approach, which is widely used in FE-based SE schemes
[20]–[22]. Our security can be summarized in two as-
pects, data privacy and query privacy, where each of
these two can be rigorously validated with Selective
Chosen-Plaintext Attacks (IND-SCPA) [19].

Data Privacy. Our data privacy indicates, by submit-
ting two spatial datasets D0 and D1, a computationally-
bounded adversary A can choose a number of ciphertext
requests and token requests confined by leakage function
L. However, this adversary is computationally infeasible
to distinguish the two spatial datasets.

Definition 4: IND-SCPA Data Privacy. Let Π =
{GenKey,BuildIndex,Enc,GenToken,Query} be a symmetric-
key GSE scheme over security parameter λ. We define a
security game between a challenger C and an adversary A
as below:

Init: A submits two datasets D0 and D1 to C, where D0 =
(D0,1, ..., D0,n), D1 = (D1,1, ..., D1,n), D0,i, D1,i ∈ ∆α

T , for
1 ≤ i ≤ n. D0 and D1 are subject to L(Γ0) = L(Γ1), where
Γ0 BuildIndex(D0), Γ1 ← BuildIndex(D1).

Setup: C runs GenKey(1λ) to generate a secret key sk.
Phase 1: A submits a number of requests, where each

request is one of the two following types:
• Ciphertext Request: On the jth ciphertext request, A

outputs a dataset D′j , where D′j = (D′j,1, ..., D
′
j,n). C

responses with an encrypted index Γ′∗j , where Γ′∗j
Enc(Γ′j , sk), Γ′j BuildIndex(D′j) and D′j is subject
to that D′j does not have any same first-level values with
D0 nor D1.

• Token Request: On the jth token request, A outputs a
query Qj , where Qj ⊆ ∆α

T . C responses with a search
token tkQj

← GenToken(Qj , sk), where Qj is subject
to L(Γ0, Qj) = L(Γ1, Qj).

Challenge: With D0,D1 selected in Init, C flips a coin
b ∈ {0, 1}, and returns Γ∗b to A, where Γ∗b ← Enc(Γb, sk)
and Γb ← BuildIndex(Db).

Phase 2: A continues to submit requests, which are subject
to the same restrictions in Phase 1.

Guess: A takes a guess b′ of b.
We say that Π is secure against Selective Chosen-Plaintext

Attacks on data privacy if for any polynomial time adversary
A in the above game, it has at most negligible advantage

AdvData
Π,A(1λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ negl(λ) (1)

Query Privacy. The query privacy of our scheme
means, by submitting two geometric range queries Q0

and Q1, a computationally-bounded adversary A is able
to choose a number of ciphertext requests and token
requests confined by leakage function L. However, ad-
versary A is not able to distinguish these two geometric
range queries. Similarly, we formally define an IND-
SCPA Query Privacy, which is presented in Appendix.

6.3 Security Proofs
Theorem 1: FastGeo is IND-SCPA data secure if SSW is

IND-SCPA data secure and PRF is indistinguishable from a
uniformly-random function.

Sketch: The main idea to prove it is to simulate the
data privacy game defined in Def. 4 with an adversary
A′. This adversary A′ is able to access the data privacy
game of SSW and also access an oracle, which is either
equal to a PRF or a uniformly-random function. Then,
we can demonstrate that compromising the security of
our scheme is equivalent to compromising the security of
SSW or distinguishing a PRF from a uniformly-random
function, which contradicts to the security of SSW or PRF.
Details of this proof are presented in Appendix.

With a similar approach, we can also prove our scheme
is query secure based on Def. 5. We skip details of the
proof of this following theorem due to space limitation.

Theorem 2: FastGeo is IND-SCPA query secure if SSW
is IND-SCPA query secure and PRF is indistinguishable from
a uniformly-random function.

6.4 Statistic Attacks on Structure Pattern
Attack Analysis. As we discussed, our design leaks

structure pattern. This leakage could be leveraged to
infer more information about spatial data if an attacker
has a stronger ability, where it also has prior knowledge
of statistic information on structures.

For instance, in the example described in Fig 2, if an
attacker already knows that, when x = 6, there are two
points while x = 1, x = 3 or x = 9 only has one
point. Then, by observing the size of each link list in
an encrypted index alone, it can infer which element
in this encrypted index is corresponding to x = 6 with
a probability of 1, because a 2-node link list is unique
in this example. On the other hand, to identify which
element in this encrypted index is corresponding to
x = 1, x = 4 or x = 9, this attacker can only succeed with
a probability of 1/3, since those three elements have the
same size of link lists. It is obvious that, for a certain link
list size, the number of link lists having this size decides
the probability of guessing a correct first-level value. The
above type of statistic information of a spatial dataset D
can be formalized as χ(D), which includes two vectors:

χ(D)← {~x = {x1, ..., xw}, ~l = {l1, ..., lw}}
where xi, for 1 ≤ i ≤ w, is a distinct first-level value
(e.g., x-value) in spatial dataset D, li is the number
of points having xi as its first-level value, and w is
the total number of distinct first-level values in spatial
dataset D. In the above example, we have χ(D) = {~x =
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{1, 3, 6, 9},~l = {1, 1, 2, 1}}, where ~l is essentially an un-
known permutation of structure pattern φ2 = (s1, ..., sw).

To formally evaluate the leakage of structure pattern
φ2 = (s1, .., sw) under statistic attacks with prior knowl-
edge χ(D), we first compute two vectors ~a, ~c as

{~a = (a1, ..., aθ), ~c = (c1, ..., cθ)} ← (s1, ..., sw)

where each aj , for 1 ≤ j ≤ θ, is a distinct size of link
lists in (s1, ..., sw), and cj is the number of link lists that
have a size of aj , and θ is the total number of distinct
components in (s1, .., sw). Simply, we also have

θ∑
j=1

cj = w,
θ∑
j=1

aj · cj = n (2)

For example, given φ2 = (1, 1, 2, 1) and w = 4 in Fig. 3,
vector ~a and ~c can be calculated as ~a = (1, 2) and ~c =
(3, 1) respectively, where c1 = 3 indicates there are three
link lists that have a size of a1 = 1, and c2 = 1 implies
there is one link list has a size of a2 = 2.

With χ(D) and (s1, .., sw), the probability for an at-
tacker to correctly guess the first-level value of a data
point Di is

pi_1st =
1

cj
(3)

where cj , for j ∈ [1, n], is the number of link lists having
the size of aj and aj is the size of the link list containing
Di. Since the probability of an attacker to guess the
second-level value of a data point is

pi_2nd =
1

m
(4)

where m is the vector length in the second level. This
statistic attacker can further guess the values of a data
point Di at both levels as

pi = pi_1st · pi_2nd|1st = pi_1st · pi_2nd =
1

cjm
(5)

Note that, with χ(D) only, pi_1st and pi_2nd are indepen-
dent (i.e., pi_2nd|1st = pi_2nd).

Next, we leverage mean and variance to measure the
advantage of this attacker. Specifically, for this attacker,
the mean of the probability guessing the values of a data
point at both levels can be calculated as

E(pi) =
1

n
·
n∑
i=1

pi =
1

n
·
θ∑
j=1

ajcj
cjm

=

∑θ
j=1 aj

nm
(6)

Intuitively, a higher mean indicates the advantage of
this attacker is higher (i.e., the overall privacy leakage of
structure pattern under statistic attacks is higher). Given
n, m and structure leakage (s1, ..., sw), if ~a = (a1, ..., aw)
and ~c = (1, ..., 1), where θ = w and cj = 1 for any
j ∈ [1, θ], it implies that each link list size is unique (i.e.,
pi_1st = 1) and the mean is maximized, which is

Emax =

∑θ
j=1 aj · 1
nm

=

∑θ
j=1 ajcj

nm
=

n

nm
=

1

m
(7)

On the contrary, if ~a = (1) and ~c = (n), where θ = 1,
it indicates that all the link list sizes are the same as 1
(i.e., pi_1st = 1/n) and this privacy leakage on structure
is minimized, which is

Emin =

∑θ
j=1 aj

nm
=

1

nm
(8)

and clearly we have

1

nm
≤ E(pi) ≤

1

m
(9)

Back to our example with ~a = (1, 2), ~v = (3, 1), where
T = m = 10 and n = 5, E(pi) = 3

50 , Emin = 1
50 ,

and Emax = 1
10 . If for two datasets/structures, where

E(pi) = E(p′i), we can further calculate variance Var(pi)
and Var(p′i) to measure the leakage to this statistic at-
tacker, where a higher variance indicates a higher leakage
in this case. In addition, if we consider all the values of
pi as a random variable P , then we can also leverage
its Cumulative Distribution Function (CDF) to further
interpret its privacy leakage (i.e., the distribution of pi,
see concrete examples in Sec. 7).

Note that, in reality, an attacker could derive partial
prior knowledge of χ(D) by observing other similar
but public spatial datasets, but it is ordinarily hard for
this attacker to obtain fully correct and complete prior
knowledge of χ(D) (i.e., some xi and li are unknown
or uncertain to this attacker), especially for large-scale
datasets. Thus, the leakage we evaluated above is in the
worse case, e.g., if E(p′i) is the attacker’s advantage with
partial prior knowledge, then E(p′i) < E(pi).

Countermeasures. To mitigate the structure leakage of
a certain dataset under statistic attacks, there are three
approaches can be applied to our design.

The first approach is padding [3], where a client pads
additional dummy nodes to each link list before outsourc-
ing, such that all the link lists have the same size. The
second approach is local counting [4], where a client keeps
a local counter for each link list that has a size greater
than 1, such that each link list only has one node. For
example, for x = 6 in Fig. 3, instead of computing an
element as PRF.GetBits(6, skp), and attaching two nodes
to this element, a client records a local counter for x = 6,
and calculates two elements as

PRF.GetBits(6||ctr = 1, skp) PRF.GetBits(6||ctr = 2, skp)

and attaches one node to each one of these two elements
respectively. As a consequence, the structure pattern after
applying local counting is φ′2 = (1, 1, 1, 1, 1).

Besides padding and local counting, another approach
we can apply is hiding pointers [3], where each pointer
from a current node to its next node in the list is
encrypted with AES and will only be decrypted if this
current node is searched. One extra sub-token will be
needed for each element in the hash table in order to
decrypt the pointer to the first node in each link list
during the search process.
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As a tradeoff, the search time will slightly increase
since revealing each pointer requires an extra AES de-
cryption. This approach can avoid a potentially large
number of dummy nodes in padding or a large local
storage for counters in local counting. We implement
local counting and hiding pointers in our scheme as ad-
ditional functions to improve security. Tradeoffs of these
countermeasures in practice are further investigated in
our later experiments in Sec. 7.

Other Statistic Attacks. Besides statistic attacks on
structures, an adversary could also carry statistic attacks
on access pattern if more information are available. Some
recent studies [30]–[33] have shown the impact of this
strong attack on keyword queries. We do not consider
such strong attacks in this paper, and will study their
particular impacts on spatial data in our future work.

6.5 The Tunable Parameter: Vector Length m

For real-world spatial datasets, normally we have a
larger data space than the example we mentioned. For
example, GPS location is one of the most commonly used
spatial data. A longitude and a latitude of a regular
location check-in data, e.g., (Long. = 110.9264, Lat. =
32.2217), have seven and six decimal digits respectively.
By directly following the examples we have, we can use
PRF to encrypt longitude as the first level and leverage
SSW to encrypt latitude as the second level. This will cer-
tainly guarantee correctness in terms of geometric range
search queries. However, a six-digit latitude with SSW
will lead to a 1,000,000-length vector in the second level,
which will not have efficient search time in practice.

To optimize the performance, we can take some higher
digits from the second level and attach them to the first
level, such that only shorter vectors are required for the
second level. For instance, we can encrypt a location as

PRF.GetBits(110.9264||32.22##, skp)

in the first level by taking four higher digits from lat-
itude, where || is the concatenation of two strings and
# is a wildcard digit. Let the number of wildcard digit
be ρ, then the length vector in the second level can be
computed as m = 10ρ. As a result, we only need a 100-
length vector for the last two decimal digits of latitude
while evaluating SSW in the second level. Essentially,
we tune vector length m smaller, and our scheme is now
sweeping line segments instead of lines. Similarly, we can
also encrypt it as PRF.GetBits(110.926#||32.221#, skp),
where our scheme essentially sweeps boxes.

A consequence of tuning m smaller is that, the number
of elements in the dictionary will increase and the num-
ber of first-level subqueries (i.e., q1) will also increase
for a same geometric range query, where more equality
checking operations are needed. However, since the unit
evaluation time of equality checking on an element is
much efficient than the one of an inner product with
SSW over long vectors, this method will still significantly
boost the overall search efficiency.

Fig. 8: The distribution of our test dataset.

On the other hand, a smaller m inevitably leads to
more privacy leakage. Specifically, tuning m smaller in-
creases the mean of the attacker’s probability of guessing
the values at both levels (i.e., E(pi)). Meanwhile, as
presented above, first-level query size pattern (φ3 = qi)
will also increase for a same query. Therefore, vector
length m is a tunable parameter in our two-level search
to balance privacy leakage and efficiency. In other words,
we can also regard vector length m as a part of the input
of our leakage function as L(D, Q,m).

7 PERFORMANCE EVALUATION

In this section, we leverage a real-world spatial dataset
to demonstrate the efficiency of FastGeo. Particularly,
we utilize Gowalla location check-in dataset [34]. The
raw spatial dataset originally contains 6,442,890 tuples
contributed by a number of 196,591 users from all over
the world. We pre-process the original dataset before we
apply it to our experiments. Specifically, since the num-
ber of locations that each user reported in the original
dataset varies very differently (e.g., some user reports
over 30 times while some user only reports twice), while
the locations reported by a same user are normally very
close, we only take one tuple from each user in order to
avoid bias introduced by different users.

In addition, we focus on locations inside the contigu-
ous U.S. only, where we use Google Maps API (with
python) to filter out locations outside the contiguous
U.S. A small number of tuples with invalid data format
are also removed. As a result, we obtain a test dataset
(i.e., a subset of Gowalla location check-in dataset),
which contains 49,870 tuples (i.e., data points) and will
be utilized in following experiments. For each longitude
and latitude of a location, we keep four digits after
decimal point, e.g., (Long. = 110.9264, Lat. = 32.2217),
where the minimal unit is 0.0001. Said differently, for
data space ∆α

T , we have T = 1 × 107 and α = 2. Note
that a 0.0001 difference in longitude or latitude is only
around a 10-yard difference in reality. The distribution
of this test dataset is shown in Fig. 8.

We evaluate the performance of our scheme with C++,
and test experiments on a medium Amazon EC2 instance
running Ubuntu 14.04. Functions related to hash tables
and link lists are directly from the standard C++ library,
PRF is implemented by AES-CBC-256 with OpenSSL,
and the running time of SSW is based on the benchmark
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results of PBC library and GMP library on our medium
Amazon EC2 instance. In the following, for ease of
evaluation, when we need to change the value of m, we
initially take the longitude and the whole-number part
(i.e., digits before the decimal point) of the latitude of
a location in the test dataset as the first level, and we
use the fractional part of its latitude as the second level
in our index, e.g., PRF.GetBits(110.9264||32.####, skp),
where the number of wild digits is ρ = 4 and m =
10ρ = 10, 000. Then, we decrease the number of wild
digits until ρ = 0 (i.e., m = 1), where both longi-
tude and latitude are included in the first level, e.g.,
PRF.GetBits(110.9264||32.2217, skp).

7.1 Performance on Encrypted Data
We evaluate the performance of our advanced scheme

over encrypted data in several aspects, index generation
& encryption time, token generation time, token size,
and search time. The two main parameters that impact
performance are vector length m and first-level query
size q1. The shape of a geometric range query (either a
circle or a polygon) hardly affects the performance.

TABLE 1: Impact of m on index generation time (second).
m Encrypted Index

1,000 10, 296
100 981
10 213

The Impact of Vector Length m. As shown in Table 1,
when m = 1, 000 (i.e., ρ = 3), it takes around 2.86 hours
to build and encrypt our index over the test dataset. For
the same dataset, if we choose a smaller vector length,
the index generation time can be significantly reduced.
For instance, when m = 100, it only needs 981 seconds,
which is over 10 times faster than the one with m =
1, 000. Although the generation of an encrypted index
takes some time, it is only a one-time cost.

For geometric range queries with a same size (i.e.,
queries covering a same number of possible points, or
said differently, |Q| = m× q1 is the same), the optimized
token generation time is presented in Table 2. We can
see that, when we decrease the value of m, the time
generating first pieces increases linearly (due to the
increase of q1) while the time spending on second pieces
decreases linearly. As a result, at a certain value of m, the
overall optimized token generation time is minimized.
For instance, when a query contains |Q| = 1×106 possible
points of the data space, which is approximately the
same as the area of Manhattan, NY or the downtown
area of San Francisco, CA, if m = 1, 000, it takes 4.49
seconds on average to generate its search token; while
it spends 17.50 seconds if m = 100 and 28.48 seconds if
m = 10, 000.

Since the time spent on second pieces also depends
on the search results of the first level, the performance
of the overall optimized token generation time is query

TABLE 2: Impact of m on optimized token time (s).
|Q| = m× q1 m Optimized Token Time

First Pieces Second Pieces Total

1× 106

10,000 0.17 28.31 28.48
1,000 1.66 2.83 4.49
100 17.21 0.29 17.50
10 168.02 0.03 168.05

1× 104

10,000 0.002 7.12 7.122
1,000 0.02 0.71 0.73
100 0.18 0.07 0.25
10 1.76 0.01 1.77

dependent. In other words, the actual value of m that
minimizes the optimized token generation time depends
on different queries. For example, when |Q| = 1 × 104,
the token time is minimized when m = 100.

Note that before we apply cryptographic primitives,
including PRF and SSW, to generate the search token
for a geometric range query, we need to first enumerate
all the possible points inside the query and generate
the equality-vector form of this range query in plaintext.
However, since the overall computation of this sub-step
is completely evaluated in plaintext, the running time
of this process hardly affects the entire performance of
token generation. For instance, given |Q| = 1 × 106, if
the query is a circle, it takes only 3 × 10−3 seconds
to enumerate all the possible points and generate the
equality-vector form; and it costs less than 9 × 10−3

seconds if it is a triangle. And when |Q| = 1 × 104, the
time drop to 3 × 10−5 seconds and 9 × 10−5 seconds,
respectively. Obviously, these running time hardly affect
the token generation time presented in Table 2.

Besides token generation time, the vector length m
also affects token size as shown in Table. 3. As we can
observe, token size is also minimized at a certain value
of m when token generation time is minimized. For
instance, given |Q| = 1 × 106, if m = 1, 000, the token
size is 132 KB, which is minimized; given |Q| = 1× 104,
the token size is minimized when m = 100.

TABLE 3: Impact of m on optimized token size.
|Q| = m× q1 m Optimized Token Size

First Pieces Second Pieces Total Size

1× 106

10,000 3.2 KB 1 MB 1 MB
1,000 32 KB 100 KB 132 KB
100 320 KB 10 KB 330 KB
10 3.2 MB 1 KB 3.2 MB

1× 104

10,000 0.03 KB 200 KB 200.03 KB
1,000 0.32 KB 20 KB 20.32 KB
100 3.2 KB 2 KB 5.2 KB
10 32 KB 0.2 KB 32.2 KB

The impact of vector length m on average search time
is described in Table 4. For a set of geometric range
queries with a same query size, a greater m will end
up with a longer average search time. More concretely,
when |Q| = 1× 106, if m = 1, 000, it takes 13.67 seconds
on average to operate the search over encrypted data;
while if m = 100, it only requires 1.50 seconds on average
to carry a same query, which is almost ten times faster.

The Impact of First-Level Query Size q1. Besides
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TABLE 4: Impact of m on average search time (s).
|Q| = m× q1 m Time

1× 106
1,000 13.67
100 1.50
10 0.25

vector length m, first-level query size q1 also affects the
performance in terms of token generation and search. In
Fig. 9, with a fixed m, it shows that the token generation
time increases with the query size of a geometric range
query in the first level.
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Fig. 9: The impact of q1 on token generation time.
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on average search time.
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Fig. 11: The impact of q1

on average result size.

The impact of first-level query size q1 on the average
search time of our scheme is described in Fig. 10. The
search time is efficient on average over encrypted data,
and normally can be done within one minute. If we
compare it with Fig. 11, we can tell that this search time
highly depends on the number of retrieved tuples for
each given geometric range query, which demonstrates
sublinear search. Moreover, this implies that, for geomet-
ric range queries with a same size, if a client searches a
dense area (e.g., California) with a lot of data points, the
search time is slower than searching a sparse area (e.g.,
Wyoming) as shown in Table 5.

TABLE 5: Average search time (s) in different areas (with
m = 1, 000 and q1 = 1, 000).

State Search Time Average No. of Retrieved Tuples
California 42.92 seconds 51
Wyoming 0.84 seconds 1

Efficient Updates. Another feature of FastGeo is the
ability to carry out efficient updates (i.e., insert, modify,
or delete a data point) over encrypted spatial data. Based
on our previous discussion, the update time is O(mτ ′),
where m is the vector length and τ ′ is the number of
nodes in the updated link list. Table 6 shows the impact

of m on the average update time over our test dataset.
Specifically, when m = 1, 000, it only takes less than 1
second to update a data point, and a smaller m will
further boost the average update time.

TABLE 6: Impact of m on average update time (s).
m Time

1,000 0.977
100 0.092
10 0.008

7.2 Comparison with Previous Solutions
We compare FastGeo with two previous GSE schemes

(denoted as GR [8] and WLW [11] respectively) over our
test dataset. The size of geometric range queries tested
below is fixed as |Q| = 1× 106, which is about 20 square
miles in reality.

GR: Given T = 1 × 107, the vector length of GR is
2dlog2 T e = 48. GR is linear search, and multiple sub-
tokens are needed in GR depends on the shape of a
query. For ease of comparison, we assume GR outputs
one sub-token only for each query, which is the best case
for its search time and token size.

WLW: We assume the length of Bloom filters used in
WLW is 1, 000 and the number of hash functions is 5 in
the following comparison. We also utilize the advanced
version of WLW, which is built based on R-trees and can
achieve logarithmic search on average.

FastGeo: We assume vector length m is 1, 000.

TABLE 7: Comparison among schemes.

Search Time (s) Complexity Token Size Update
GR [8] 1, 753 linear 0.96 KB No

WLW [11] 1, 583 logarithmic 20 KB No
FastGeo 13.67 sublinear 132 KB Yes

We first compare average search time. As we can see
from Table 7, our scheme is extremely efficient, and is at
least over 100 times faster compared to others on aver-
age. Specifically, our scheme is sublinear search while GR
is linear search. In addition, as we described in Table 4,
we can also choose a smaller m (e.g., m = 100) to further
boost the search time of our scheme. More importantly,
our scheme can operate highly efficient updates while
the other two fail to support. As a necessary tradeoff, our
scheme requires more communication cost compared to
the other two schemes. For example, our scheme needs
132 KB on token size, while the other two only spend 0.96
KB and 20 KB, respectively. It is worth to mention that
the communication cost of our scheme and GR are query
dependent (i.e., the token size is different for variant
queries), while the one in WLW is constant.

7.3 Leakage under Statistic Attacks
We now evaluate the structure leakage of our scheme

over the test dataset under statistic attacks. We can see
from Table 8 that, with the increase of m, the privacy
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leakage on structure under statistic attacks (i.e., the mean
of pi) is decreasing. Concretely, when m = 1, 000, the ex-
pected probability for an attacker to guess an encrypted
point of the values at both levels is only 2.569 × 10−5,
which is very small. Moreover, if we consider all the
values of pi as a random variable P , and we can leverage
its Cumulative Distribution Function (CDF) to further
demonstrate structure leakage under statistic attacks is
small and limited. For example, as shown in Fig. 12
where m = 1, 000, over 60% of all the pi are only
3.3 × 10−8, and over 94% of pi are less than the mean.
Note that about 1.4% of pi reaches the maximal value
0.001 (i.e., 1/m) because their corresponding link sizes
are unique. In other words, 1.4% of encrypted points are
relatively easier to guess than other ones under statistic
attacks. However, these points are only a small portion
of the entire dataset. For other values of m, the CDF of pi
also have a similar trend as m = 1, 000, we skip further
details due to space limitations.

TABLE 8: Structure leakage under statistic attacks

m E(pi) Emin Emax

1,000 2.569× 10−5 2× 10−8 0.001

100 2.482× 10−4 2× 10−7 0.01

10 2.434× 10−3 2× 10−6 0.1

1 2.484× 10−2 2× 10−5 1

4.1×10−6 3.1× 10−5 1× 10−4 1× 10−3
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Fig. 12: CDF of P when m = 1, 000.
In our analyses, we also observe that those unique

link list sizes normally happen when a link list size
is long in this test dataset. In fact, according to our
study, most of the locations stored in those long link lists
are major international airports in the U.S. For instance,
when sk = 117, which is a unique link list size, it maps to
the location of San Francisco International Airport (SFO).
In other words, if an attacker has statistic information
on structure pattern, then it is easier for this attacker
to guess a correct data point if it is at an international
airport compared to other places in this test dataset.

Tradeoffs Introduced by Countermeasures. As we
mentioned in Sec. 6, three countermeasures, including
padding, local counting, and hiding pointers, can be ap-
plied to mitigate structure leakage under statistic attacks.
Since padding will introduce a huge amount of storage
and extra search time, we implement local counting (LC)
and hiding pointers (HP) respectively in our scheme as
two additional functions to enhance privacy protection.
We compare their tradeoffs in Table 9, where we assume
query size |Q| = 1×106 and vector length m = 1, 000. As

we can see, both LC and HP introduce small tradeoffs in
search time and token size in order to mitigate structure
leakage. In addition, LC requires 80 KB to maintain local
counters while HP does not introduce any local storage.

As shown in Table 9 and Fig. 13, we can also see
that both LC and HP can significantly mitigate the
privacy leakage under statistic attacks. For example,
after applying LC or HP, the probability for an attacker
(with statistic information on structure pattern) to guess
a point is 2.747 × 10−8. As a result, for points with
unique link size before applying countermeasures (e.g.,
pi = 1/m = 0.001), it is over 3× 105 times harder for an
attacker to reveal those points.

TABLE 9: Tradeoffs Introduced by Countermeasures.

Search Time Token Size Local Storage E(pi)

With LC 13.68 s 142 KB 80 KB 2.747× 10−8

With HP 13.70 s 135 KB 0 KB 2.747× 10−8

FastGeo 13.67 s 132 KB 0 KB 2.569× 10−5

2.747×10−8
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

P

LC/HP

Fig. 13: CDF of P with LC/HP when m = 1, 000.

8 CONCLUSION

We propose FastGeo, an efficient two-level search
scheme that can operate geometric ranges over encrypted
spatial datasets. Our experiment results over a real-
world dataset demonstrate its effectiveness in practice.
Moreover, our comparison with previous solutions in-
dicates that the general idea of two-level search can be
leveraged as an important methodology to boost search
time and enable highly efficient updates over encrypted
data when complex operations, such as compute-then-
compare operations, are involved in search.
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APPENDIX

A. Correctness of Our Scheme
Assume a perfect hash function is implemented in the

hash table, where its error probability is

pe_hash = Pr(HashTable.Find(x,Γ) = 1, where x /∈ Γ)

≤ negl1(λ)

And according to [19], the error probability of
SSW.Query is

pe_ssw = Pr(SSW.Query([~u], [~v]) = 1, where < ~u,~v >6= 0)

≤ negl2(λ)

For a point Di = (di,1, di,2) and a geometric range
query Q, when Di /∈ Q, there are three different cases
for our scheme to erroneously return identifier Ii: 1) If
di,1 /∈ Qx and di,2 /∈ Qy , where Qx is the range projection
of Q in x-dimension and Qy is the range projection of Q
in y-dimension. The error probability of returning Ii is

p1 = pe_hash · pe_ssw ≤ negl1(λ) · negl2(λ) = negl′(λ)

2) If di,1 /∈ Qx but di,2 ∈ Qy , the error probability is
p2 = pe_hash ≤ negl1(λ); 3) If di,1 ∈ Qx but di,2 /∈ Qy , the
error probability is p3 = pe_ssw ≤ negl2(λ);

Therefore, if Di /∈ Q, the error probability is Pr[Ii ∈
IQ|Di /∈ Q] = max{p1, p2, p3} ≤ negl(λ).

B. IND-SCPA Query Privacy
Definition 5: IND-SCPA Query Privacy. Let Π =
{GenKey,BuildIndex,Enc,GenToken,Query} be a symmetric-
key GSE scheme over security parameter λ. We define a
security game between a challenger C and an adversary A
as below

Init: A submits two queries Q0 and Q1 to C, where
Q0, Q1 ⊆ ∆α

T and they are subject to L(Q0) = L(Q1).
Setup: C runs GenKey(1λ) to generate a secret key sk.
Phase 1: A adaptively submits a number of requests where

each request is one of the two following types:
• Ciphertext Request: On the jth ciphertext request, A

outputs a dataset Dj = (Dj,1, ..., Dj,n), where Dj,i ∈
∆α
T , for 1 ≤ i ≤ n. C responses with an encrypted index

Γ∗j , where Γ∗j ← Enc(Γj), Γj ← BuildIndex(Dj), and
Dj is subject to L(Γj , Q0) = L(Γj , Q1).

• Token Request: On the jth token request, adversary A
outputs a geometric range query Q′j , where Q′j ∈ ∆α

T .
Challenger B responses with a search token tk′j
GenToken(Q′j , sk), where Q′j is subject to L(Q′j , Q0) =
L(Q′j , Q1).

Challenge: With Q0, Q1 selected in Init, C flips a
coin b ∈ {0, 1}, and returns tkQb

to A, where tkQb
←

GenToken(Qb, sk).
Phase 2: A continues to adaptively submit requests, which

are subject to the same restrictions in Phase 1.
Guess: A takes a guess b′ of b.

We say that Π is secure against Selective Chosen-Plaintext
Attacks on query privacy if for any polynomial time adversary
A in the above game, it has at most negligible advantage

AdvQuery
Π,A (1λ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≤ negl(λ) (10)

C. Detailed Proof of Theorem 1
Proof: Init: A′ selects two datasets D0 and D1,

where D0 = (D0,1, ..., D0,n), D1 = (D1,1, ..., D1,n),
D0,i, D1,i ∈ ∆α

T , for 1 ≤ i ≤ n. A′ computes
Γ0 ← BuildIndex(D0, σ) and Γ1 ← BuildIndex(D1, σ).
Since Γ0 and Γ1 are subject to L(Γ0) = L(Γ1),
we have Γ0 = {{e0,1, list0,1}, ..., {e0,w, list0,w}}, Γ1 =
{{e1,1, list1,1}, ..., {e1,w, list1,w}}, where list0,j .size() =
list1,j .size(), for 1 ≤ j ≤ w. A′ submits Γ0 and Γ1 to
C.

Setup: C runs skp PRF.Init(1λ) and sks
SSW.Setup(1λ) to setup a secret key sk = {skp, sks}. C
also initializes a local table E .

Phase 1: A′ issues a number of requests. For a ci-
phertext request, A′ outputs a dataset D′j , where D′j =
(D′j,1, ..., D

′
j,n) and D′j,i ∈ ∆α

T . A′ computes Γ′j ←
BuildIndex(D′j , σ), where Γ′j = {{e′j,k, list′j,k}| for 1 ≤ k ≤
w′j}. Since D′j is subject to that it does not have any
same first-level values with neither D0 and D1, we have
e′j,k /∈ {e0,1, .., e0,w, e1,1, ..., e1,w}, for any k ∈ [1, w′j ]. A′
submits Γ′j to C.
C initializes an encrypted index Γ∗j as null. Given a

pair of {e′j,k, list′j,k} ∈ Γ′j , where 1 ≤ k ≤ w′j , C first
checks its local table E with e′j,k. If e′j,k is not in the
table, C either calculates [e′j,k] = PRF.Init(e′j,k, skp) or
randomly pick a [e′j,k], and inserts (e′j,k, [e

′
j,k]) to table E ;

otherwise, C directly retrieves [e′j,k] from table E . Then,
C initializes a list list′∗j,k as null. For each ~u′j,k,l ∈ list′j,k,
where 1 ≤ l ≤ list′j,k.size(), C computes [~u′j,k,l] =
SSW.Enc(~u′j,k,l, sks), and appends [~u′j,k,l] to list list′∗j,k. For
a pair of {e′j,k, list′j,k}, C outputs a pair of {[e′j,k], list′∗j,k},
and inserts this pair to Γ∗j . Finally, C returns Γ∗j as an
output of a ciphertext request.

For a token request, A′ outputs a query Qj , where
L(Γ0, Qj) = L(Γ1, Qj). A′ represents Qj in enhanced
equality-vector form as SQj = {{ej,i, ~vj,i}| for 1 ≤ i ≤
qx,j}, and submits SQj to C. Given L(Γ0, Qj) = L(Γ1, Qj),
it indicates, for each ej,i, where 1 ≤ i ≤ qx,j ,

((HT.Find(Γ0, ej,i) 6= null) ∧ (HT.Find(Γ1, ej,i) 6= null))
or ((HT.Find(Γ0, ej,i) = null) ∧ (HT.Find(Γ1, ej,i) = null))

If HashTable.Find(Γ0, ej,i) is not null, then for ~vj,i, the
requirement of L(Γ0, Qj) = L(Γ1, Qj) indicates

(< ~u0,k, ~vj,i >= 0 ∧ < ~u1,k, ~vj,i >= 0)
or (< ~u0,k, ~vj,i >6= 0 ∧ < ~u1,k, ~vj,i >6= 0)

where ~u0,k ∈ list0, ~u1,k ∈ list1, list0.size() = list1.size(),
1 ≤ k ≤ list0.size(), list0 ← HashTable.Find(Γ0, ej,i) and
list1 ← HashTable.Find(Γ1, ej,i).
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Given each {ej,i, ~vj,i} ∈ SQj
, for 1 ≤ i ≤ qx,j , C

first checks whether ej,i is in table E . If it is not in the
table, C either computes [ej,i] = PRF.GetBits(ej,i, skp) or
randomly pick a [ej,i], and inserts (ej,i, [ej,i]) to table E ;
otherwise, C directly retrieves [ej,i] from table E . Then,
C computes [~vj,i] = SSW.GenToken(~vj,i, sks), and outputs
a sub-token tkj,i = {tkp,j,i, tks,j,i} = {[ej,i], [~vj,i]}. Finally,
C outputs a search token tkQj = {tkj,i| for 1 ≤ i ≤ qx,j}.

Challenge: With Γ0 and Γ1, C flips a coin b ∈ {0, 1}, ini-
tializes Γ∗b as null, and given each a pair of {eb,k, listb,k} ∈
Γb, where 1 ≤ k ≤ w, for each eb,k, if eb,k is not in the
local table E , C calculates as below: if b = 0, it computes
[eb,k] = PRF.GetBits(eb,k, skp); otherwise, it randomly
picks [eb,k]. And then it inserts (eb,k, [eb,k]) to table E ;
otherwise, C retrieves [eb,k] directly from table E . Then,
C initializes a list list∗b,k as null. For each ~ub,k,l ∈ listb,k,
where 1 ≤ l ≤ sk and sk = listb,k.size(), C computes
[~ub,k,l] = SSW.Enc(~ub,k,l, sks), and appends [~ub,k,l] to
list list∗b,k. For a pair of {eb,k, listb,k}, C outputs a pair
of {[eb,k], list∗b,k}, and inserts this pair to Γ∗b . Finally, C
returns Γ∗b to A′.
A′ continues to adaptively submit a number of re-

quests in Phase 2, and takes a guess b′ of b in Guess.
In the above simulation, if A′ could distinguish ~u0,k,l

and ~v1,k,l, for any l ∈ [1, sk] and for any k ∈ [1, w],
where

∑w
k=1 sk = n, or if for any e0,i 6= e1,i, where

i ∈ [1, w], A′ could distinguish a PRF from a uniformly-
random function, then A′ could distinguish Γ0 and Γ1

(i.e., distinguish the two spatial datasets D0 and D1).
Therefore, the advantage of A′ distinguishing D0 and
D1 is

AdvData
Π,A′(1

λ) = 1− (1−AdvData
SSW,A′)

n · (1−AdvPRF,A′)
w′

where w′ is the number of e0,i 6= e1,i and w′ ≤ w.
Based on the security of PRF and SSW, we learn that
AdvData

SSW,A′ ≤ negl1(λ) and AdvPRF,A′ ≤ negl2(λ), then
we have

AdvData
Π,A′(1

λ) ≤ 1− (1− negl1(λ))n · (1− negl2(λ))w
′

≤ 1− (1− negl′(λ))

= negl′(λ)

which demonstrates our scheme is data secure. Proper-
ties of negligible functions [14] are applied here.




