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TABLE 2
Evidence Notations for our non-repudiation protocol with offline TA.

No problem occurs CSP launches Abort protocol CSP or User launches Recovery Protocol
Evidences owned by CSP EOR, EORK||V O ConA EOR, ConK||V O

Evidences owned by User EOO, Sub, EOOK||V O EOO, Sub, ConA EOO, Sub, ConK||V O

Algorithm 3 Verification
Input:

R: the query answer;
Y = {pk1, pk2, . . . , pkn}: a set of public keys;
V O: the verification object;

Output:
accept or reject;

1: obtain the KN’s signature and hash value from the V O,
denoted as s= (x̃, ỹ, c1, . . . , cn) and hashvalue, respec-
tively;

2: compute c0 = H2

(
Y ‖hashvalue ‖ gx̃hỹ

n∏
j=1

pk
cj
j

)
;

3: if
n∑
j=1

cj mod p 6= c0 then return reject;

4: end if
5: reconstruct the KN’s hash value, denoted as hashvalue′,

according to R and V O;
6: if hashvalue′ = hashvalue then return accept;
7: else return reject;
8: end if

6 SECURITY AND PERFORMANCE ANALYSIS

In this section, we first prove the security of our scheme in
terms of: the unforgeability and anonymity of the signature,
the completeness, authenticity, and trustiness of the query
answer, the interaction traceability between CSP and user.
Then we present the performance analysis of our scheme.

6.1 Security Analysis
The security of our proposed scheme is mainly based on the
discrete logarithm assumption(DLA) is hard.
Definition 6.1 (DLA). For any probabilistic polynomial time

(PPT) algorithm A, the probability that Pr[A(g, ga) = a]
is negligible, where g, ga ∈R G.

This Computational Assumption is reasonable, since
DLP in large number field is widely considered to be in-
tractable [56], [57], [58]. Therefore a is not deducible from
ga even if g is publicly known. In this paper, the field G is
large enough to ensure the security of our scheme.
Definition 6.2 (Unforgeability). A signature scheme is un-

forgeable if for all PPT adversary A, the probability
that he can construct a forged signature sM which
satisfies V (Y,M, sM )=accept, denoted as AdvunfA =
Pr [A forges a valid signature] is negligible, where M is
a message, and sM is the signature on M .

Definition 6.3 (Anonymity). A signature scheme is anony-
mous if for any PPT adversary A, the probability
that A can guess the signer, denoted as AdvanonA =
Pr [A infers the signer’s public key]− 1

n , is negligible.

Next we will analyze the security of our scheme from
seven aspects, as shown in the following seven theorems.

Theorem 6.1 (Unforgeability). Our signature scheme is un-
forgeable.

Proof: Let’s prove by contradiction. Assume a hash value
hv, whose signature is denoted as s = (x̃, ỹ, c1, . . . , cn),
provided by DOi. From Algorithm 3, we can get

c0 = H2

Y ‖hv ‖ gx̃hỹ n∏
j=1

pk
cj
j


where

n∑
j=1

cj mod p = c0. Now, an PPT adversary forges

a signature, denoted as s′ = (x̃′, ỹ′, c′1, . . . , c
′
n), where there

exists at least one element is not equal to the counterpart
in s, i.e. x̃′ 6= x̃, or ỹ′ 6= ỹ, or c′j 6= cj , j = 1, . . . , n. s′ is
assumed to satisfy the following equation:

c′0 = H2

Y ‖hv ‖ gx̃′hỹ′ n∏
j=1

pk
c′j
j


where

n∑
j=1

c′j mod p = c′0.

1) c′0 = c0. Since the collision-resistance of hash func-
tion H2, we can deduce

gx̃
′
hỹ
′ n∏
j=1

pk
c′j
j = gx̃hỹ

n∏
j=1

pk
cj
j

⇒ g
x̃′+

n∑
j=1

c′jxj

h
ỹ′+

n∑
j=1

c′jyj
= g

x̃+
n∑

j=1
cjxj

h
ỹ+

n∑
j=1

cjyj

⇒


x̃′ +

n∑
j=1

c′jxj = x̃+
n∑
j=1

cjxj

ỹ′ +
n∑
j=1

c′jyj = ỹ +
n∑
j=1

cjyj

⇒


(x̃′ − x̃) +

n∑
j=1

(
c′j − cj

)
xj = 0

(ỹ′ − ỹ) +
n∑
j=1

(
c′j − cj

)
yj = 0

a) One obvious solution to the above equation
is x̃′ = x̃, ỹ′ = ỹ, c′j = cj , j = 1, . . . , n, which
contradicts the assumption that x̃′ 6= x̃, or
ỹ′ 6= ỹ, or c′j 6= cj , j = 1, . . . , n.

b) Other solutions are hard to calculate, since
xj , yj , j = 1, . . . , n are kept secret.

2) c′ 6= c0. It is obviously hard to com-

pute x̃′, ỹ′, c′1, . . . , c
′
n such that

n∑
j=1

c′j =

H2

(
Y ‖hv ‖ gx̃′hỹ′

n∏
j=1

pk
c′j
j

)
mod p, since

the one-way hash function and the hard DLP.

Hence, our signature algorithm proves unforgeable.
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Theorem 6.2 (Anonymity). Our scheme can guarantee DO’s
identity anonymity.

Proof. Here we assume only public key pki can reveal 
the identity of DOi. All the information the adversary can 
get is the signature s = {x̃, ỹ, c1, . . . , cn}, public key list 
Y , and public parameter PA. These information holds the
following equation:

n∑
j=1

cj = H2

Y ‖hv ‖ gx̃hỹ n∏
j=1

pk
cj
j

 mod p

where the prefix Y ||hv can tell nothing about the identity

of DOi. We just consider the suffix, i.e., gx̃hỹ
n∏
j=1

pk
cj
j . We

denote B =
n∏
j=1

pk
cj
j , and A = gx̃hỹB. From Algorithm 1,

we can obtain

x̃ = rx − cixi mod p
ỹ = ry − ciyi mod p

.

Hence the following equation holds:

A = grx−cixihry−ciyiB = grxhryB
pk

ci
i

⇒ pkcii = B
Ag

rxhry

As described in Algorithm 1, rx, ry are random values and
kept secret. Hence we can not compute the public key pki
of DOi.

Hence, our scheme can guarantee DO’s anonymity.
Compared with the scheme in [9], the sign computation

cost and verification computation cost are reduced from
E + 2M and 2M to E +M and M respectively, where E
represents an exponentiation, M represents a multi-bases
exponentiation which is equal to the cost of approximate 1.3
exponentiation. We achieve this by discarding its linkability.
Theorem 6.3 (Completeness). If hash function is collision-

resistant, the query answer and VO are all authentic,
then our scheme can verify the completeness of query
answer.

Proof. Assume the query answer is {ak, ak+1, . . ., aj}. In
general, the first two elements of VO, as the output of
Algorithm 2, are the left and right boundary data. When
they are not null, we denote them as ak′ and aj′ , respec-
tively. ak′ and aj′ surely dissatisfy the query claims. If
we can prove that ak′(aj′) is left (right) adjacent tightly
to ak(aj), then our scheme can verify the completeness
of {ak, ak+1, . . ., aj}. Let’s prove by contradiction. Assume
that ak′(aj′) is not left (right) adjacent to ak(aj). That is
to say, there are other data records between ak′(aj′) and
ak(aj). When executing Algorithm 3, the verification result
is hashvalue′ 6= hashvalue and failing, since hash function
is collision-resistant. In consequence, only when ak′(aj′) is
left (right) adjacent tightly to ak(aj), will the authentication
succeeds. So far the proof is completed. Our scheme can
verify the completeness of query answer.
Theorem 6.4 (Authenticity). If hash function is collision-

resistant, and the query answer is complete, our scheme
can verify the authenticity of query answer.

Proof. Let’s prove by contradiction. If the query answer is
tamped or forged, hash value of the KN, reconstructed using

unauthentic query answer and hash values of VO, will differ
with the hash value computed from the signature of the
same KN. Algorithm 3 will output reject. In consequence,
only when {ak, ak+1, . . ., aj} is authentic, will the verifica-
tion succeed. The proof is completed. Our scheme can verify
the authenticity of query answer.

Theorem 6.5 (Trustiness). If hash function is collision-
resistant, our scheme can verify the trustiness of the
query answer.

Proof. Theorems 6.3 and 6.4 have proven our scheme can
verify the completeness and authenticity of query answer.
As for the trustiness, it relies completely on the trustiness
of the signature in VO. Assume the signature is denoted
as s= (x̃, ỹ, c1, . . . , cn). From the signing procedure in Algo-
rithm 1, we can obtain

c1 + . . .+ cn mod p = H2 (Y ‖hashvalue ‖K )

= H2

(
Y ‖hashvalue ‖ gx̃+cixi hỹ+ciyi

n∏
j=1,j 6=i

pk
cj
j

)

= H2

(
Y ‖hashvalue ‖ gx̃hỹ (gxihyi)

ci
n∏

j=1,j 6=i
pk
cj
j

)

= H2

(
Y ‖hashvalue ‖ gx̃hỹ

n∏
j=1

pk
cj
j

)
.

(1)
Algorithm 3 tells us that

c0 = H2

Y ‖hashvalue ‖ gx̃hỹ n∏
j=1

pk
cj
j

 . (2)

So
n∑
j=1

cj mod p=c0 holds. Till now, the trustiness of the

signature is proved. Hence, our scheme can verify the
trustiness of the query answer.

Theorem 6.6 (Traceability). Our scheme can guarantee inter-
action traceability between CSP and user.

Proof. When the transaction between CSP and user is suc-
cessful, either only the Main Protocol, or both the Main
Protocol and Recovery Protocol, are launched. In each case,
we can prove the interaction traceability of our scheme.

1. Only the Main Protocol is launched.
CSP has the evidence of non-repudiation receipt

{EOR,EORK||V O}, and user has the evidence of non-
repudiation origin {EOO,Sub,EOOK||V O}.

After verifying R is correct through Algorithm 3, if user
denies receipt of R, CSP can prove his receipt by presenting
R, EK(R), K, V O, L and {EOR,EORK||V O} to TA. TA
executes three checks: 1) EORK||V O is user’s signature on
(fEORK||V O

, CSP,L,K, V O); 2)EOR is user’s signature on
(fEOR, CSP, TA,L,H2(EK(R))); 3) R = DK(EK(R)). If
the above three checks are positive, TA will conclude user
received R.

When CSP denies the origin of incorrect R, user has to
present R, EK(R), K, V O, L and {EOO,Sub,EOOK||V O}
to TA. Similarly, TA executes four checks: 1) EOOK||V O
is CSP’s signature on (fEOO, Cient, L,K, V O); 2) EOO
is CSP’s signature on (fEOO, User, TA,L,H2(EK(R))); 3)
Sub is CSP’s signature on (fSub, User, L,ETA(K||V O)); 4)
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R = DK(EK(R)). If the above four checks are all positive, 
TA claims that CSP is at the origin of incorrect R.

2. Both the Main and Recovery Protocol are launched.
CSP has the evidence of non-repudiation receip-

t {EOR,ConK||V O}, and user has the evidence of non-
repudiation origin {EOO,Sub, ConK||V O}. As described in
Section 4.2.4, ConK||V O, the signature of TA on K, V O, is
the substitution for EORK||V O and EOOK||V O, which has
equal functions to EORK||V O and EOOK||V O. Hence we
can prove the interaction traceability of our scheme in a
similar way to the first case.

In all, we get the conclusion that our scheme can guar-
antee interaction traceability between CSP and user.

6.2 Performance Analysis
Theorem 6.7 (High Efficiency). The high efficiency of our

scheme is mainly manifested in ServiceV erify from
two aspects: on the one hand, it reconstructs the subtree
rooted in the KN of VO; on the other hand, it first checks
the trustiness of signature in VO.

Proof. Even though one hashing operation is around 50
times faster than modular multiplication [11], the hashing
computation cost is still high when facing the big data.
To reduce the hashing computation overhead at user, our
scheme improves the traditional MHT-based verification
scheme from the following two aspects.

On the one hand, our scheme signs the hash values of the
root node, as well as the nodes on level

⌊
log2
√
N + 0.5

⌋
.

So if there is one KN on internal level covering the query
answer and the two boundary values, our scheme just needs
to reconstruct the subtree rooted in such a KN, while the
traditional schemes always reconstruct the whole MHT.

On the other hand, when verifying query answer, previ-
ous schemes firstly reconstruct the hash value of the root
node using a lot of hash computation, then compare it
with the hash value computed from the signature. If the
signature is not trusted, not only much hash computation is
wasted, but also the query answer will prove to be false all
the same even though it is correct. However, such problem
can be avoided in our scheme by concatenating the hash
values with their signatures, then checking trustiness before
verifying the completeness and authenticity.

Next we will compare our scheme performance with
those in [9] and [7]. Our scheme is improved from both
[9] and [7]. The scheme proposed in [9] signs the values
one by one. Chapter 3 in [7] describes an authentication
scheme for selection queries on the basis of MHT. Assume
the query answer R contains l data values. The comparison
and analysis results are shown in Table 3. In Table 3, our
scheme has two cases about verification computation cost
and VO size, respectively. It is caused by the KN in VO. If the
KN is the root node, both verification computation cost and
VO size are the same as those in [7]. If the KN is an internal
node, both verification computation cost and VO size are
much smaller. In essence, our scheme sacrifices slightly
higher sign computation cost to improve the verification
efficiency and reduce the communication cost. Hence the
sign computation cost is a little higher than that in [7],
but far lower than that in [9], which will be proved by
experiments in Section 7.

7 EXPERIMENT

All algorithms are implemented using Visual C++ 6.0 on
a Windows 8.1 system with Intel CORE i7-4500U CPU
@ 1.80GHz and 8.00G RAM. We implement the proposed
scheme and evaluate the performance over multiple groups
of random data. The selection queries are of the form as
SELECT * FROM stream WHERE li < Ai < ui.
In order to compare with other schemes fairly, there are
different numbers of random data in each group. Moreover,
1000 random queries are processed. We compute averages
of sign computation time, VO generation time, verification
computation time, VO size and tamper detection time, re-
spectively, as experimental results shown in Figs. 5–9.

Figs. 5–8 show the cost comparison results of sign com-
putation, VO generation, verification computation and VO
storage, respectively. Firstly, it is evident that all these cost,
except the VO generation cost, as shown in the lines marked
by circles, increase quickly. The scheme proposed in [9]
signs all the data values one by one. As a consequence, the
CSP need do nothing for VO generation, and just takes the
signatures as the VO. In brief, the signature cost is propor-
tional to the whole database size, and the VO generation
cost is trivial. In our scenario, the volume of the data is
very large. Hence the scheme [9] isn’t applicable. By the
way, the verification computation cost and VO size in [9]
are experimentally proportional to the number of data in
a query answer. But for simplicity, we present all these
performance in one figure.

Next, let’s see the comparison results between our
scheme and the scheme proposed in [7], shown in lines
marked by triangles and rectangles, respectively. We can
see that our scheme has slightly higher sign computation
cost, but the lower verification cost and the smaller VO
size. Our scheme sacrifices slightly higher sign computation
cost to improve the verification efficiency and reduce the
communication cost, as analyzed in Theorem 6.7.

Finally, we compare the efficiency in detecting whether
the signature is valid or not. Fig. 9 shows our scheme
achieves the highest detection efficiency. The detection time
cost of the schemes in [7], [9] is almost the same as the
verification computation cost in Fig. 7. It is because that
the signature tampering can not be detected until the whole
verify process is completed. In our scheme, the signature
is always companied with the corresponding signed hash
value, which can help us to detect the signature tampering
efficiently by Algorithm 3.

All the experimental results meet the theoretical analysis
in Table 3.

8 CONCLUSION

Since there are multiple data providers and a wide range
of users in cloud service systems, it is hard to take full
advantage of cloud data to serve people well on the premise
of not infringing upon the interests of others. In this paper,
it is the first time to propose a cooperative query answer
authentication scheme which applies to cloud. This scheme
can not only verify the trustiness, completeness, authentic-
ity of the query answers efficiently, but also satisfy DO’s
requirement for anonymity and guarantee non-repudiation
service between CSP and user. Firstly, the proposed scheme
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TABLE 3
Comparison and analysis

Scheme Authenticity
and com-
pleteness

High
efficiency

Multi-DO
supporting
and DO’s

anonymity

Query non-
repudiablility

Sign
computation

cost

Verification
computation

cost

VO size

[9] × ×
√

× O (N) O (l) O (l)

[7]
√

× × × O (log2N) O (log2N) O (log2N) + 2log2N

Ours
√ √ √ √

O
(
log2 N+

√
N
)

O
(
log2
√
N
)

or O (log2 N)

O
(
log2
√
N
)
+ 2 log2 N

or O (log2 N) + 2 log2 N
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Fig. 5. Sign computation
cost.
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Fig. 6. VO generation cost.
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Fig. 7. Verification computa-
tion cost.
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Fig. 8. VO size.
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Fig. 9. Detection time cost
for signature tampering.

chooses and signs the KN in the MHT based on the ring
signature scheme, which can both verify the correct of query
result when keeping DO anonymous, and supports multiple
DOs. Secondly, we introduce a non-repudiation protocol
based on VO to solve the repudiable behaviors of CSP and
user. Finally, the experimental results show our proposed
scheme is of higher efficiency and lower communication
cost than others.
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