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Seat=MIN(C;j. Seat) ( V' Cj € Avail CnSubset(C))
19 //Identify the classroom
20 end

The input of the algorithm is the class spaces set T
and the output the classroom for each class, as described
in the Line 1~2. The DoneT set includes the lessons that
have been assigned with a classroom. In contrast, Un-
doneT indicates the classes that have not been arranged.
AvailC refers to the classrooms that have been occupied
by DoneT. At start-up, both DoneT and AvailC are ini-
tialized to empty set, while UndoneT is set to T.

Subsequently, the class that has the longest duration
time in the T will be scheduled at first. For each selected
class, first the time conflict with the classes that have
been already scheduled should be excluded, as pre-
sented from Line 7~9. Then other significant constraints
like the seat and multimedia conflict should be removed,
as is described in Line 11~13. Finally Line 15~19 identi-
fies the final classroom.

Let N be the scale of the classroom spaces and M is
the scale of the lecture space, from the description we
can get the complexity of the algorithm is O (MxN).

4 A CASE STuDY

To demonstrate the effectiveness of the SmartClass ar-
chitecture, we evaluate the SmartClass with a real class-
room scheduling application.

4.1 Demonstration Input Arrays

A sample test case is illustrated with eight lectures
and four classrooms. The five-dimensional lecture tuple
T(I,C,S,Te M) and two-dimensional classroom tuple
C(Seat,M) are described in Table 3.

The basic input includes both lecture and classroom
datasets. On one hand, for lecture information, a five-
dimensional tuple is given as the features include
[StartTime, EndTime], Classroom, Student Number,
Teacher Name and Multimedia. For instances, T1 ([1-2,

9-10], C, 100,“Cheung”,Y) indicates that the lecture T1 is
taken at 1-2 and the 9-10 time slots. The lecture is given
by Professor Cheung, and requires a classroom can ac-
commodate 100 students with a multimedia support. By
the time of the input process, it is clear that the class-
room has not been selected yet, therefore the Classroom
is denoted as “C” instead of a specific value. On the
other hand, the classroom information includes the seat
number and the Multimedia features.

TABLE 3. A DEMONSTRATION TESTCASE

Input T(I,C,S,Te,M) C(Seat,M)
T1([1-2,9-10],C, 100,“Cheung”,Y) C1(150,Y)
T2([4-5,9-10],C, 50,“Lee”,N) C2(50,N)
T3([3-4,11-15],C, 75,"Wong”,Y) C3(100,N)
T4([6-8,12-15],C, 50,”Chung”,N) C4(120,Y)

T5([1-3,18-20],C, 50, Yang”,N)

T6([4-5,12-13],C, 80,“Lee”,Y)

T7([1-3,8-9],C, 100,“Zhao”,N)

T8([16-17],C, 50,“Lew”,N)

4.2 Scheduling Process

The scheduling procedure should decide the priority for
all the lectures. Regarding the input lectures from T1 to
T8, the scheduling order of the lectures is T3, T4, T5, T7,
T1, T2, T6 and T8, sorted by descending order of the
timing intervals. Fig.5 illustrates the detailed scheduling
procedure and the experimental results. In particular,
for each scheduling step, the Preset, Subset and the se-
lected classroom is described as below:

T1([1-2,9-10],C, 100,“Cheung”,Y) T3

T2([4-5,9-10),C, 50,“Lee”,N) T4
T3([3-4,11-15],C, 75,“Wong”,Y) (Lt
T4([6-8,12-15),C, 50,“Chung”,N) g 7
T5([1-3,18-20],C, 50,“Yang”,N) E

A

T6([4-5,12-13],C, 80,“Lee”,Y)
T7([1-3,8-9],C, 100,“Zhao”,N)
T8([16-171,C, 50,“Lew”,N)
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Fig. 5. The scheduling results for the test case. Different classrooms are filled with distinct colors. The right part illustrates the schedul-
ing process of the 8 subjects, in which x-axis represents the time line, while the y-axis is the scheduling order. For each subject, a specific

classroom is assigned, and class C1 is unnecessary finally.
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— For T3, Preset={C1,C2,C3,C4}, Subset={C1,C3}, and
final selected classroom is C3.

— For T4, Preset={C1,C2,C4}, Subset={C2,C4}, and final
selected classroom is C2.

— For T5, Preset={C1,C2, C4}, Subset={C2,C4}, and final
selected classroom is C2.

— For T7, Preset={C1, C4}, Subset={C3}, and final se-
lected classroom is C3.

— For T1, Preset={C1, C4}, Subset={C1,C4}, and final
selected classroom is C4.

— For T2, Preset={C1,C2}, Subset={C2},
lected classroom is C2.

— For T6, Preset={C1, C4}, Subset={C1,C4}, and final
selected classroom is C4.

— For T8, Preset={C1,C2,C3,C4}, Subset={C2,C3}, and
final selected classroom is C2.

and final se-

Finally, the final classroom set is a combination of all
the available classroom IDs, which results in the AvailC
is {C2,C3,C4}.

4.3 Timing Complexity Analysis

The above case study demonstrates the effectiveness
of the SmartClass concepts and the timing complexity
for the algorithm. Since the time complexity of our pro-
posed greedy algorithm is only O(MxN), SmartClass
approach is less timing consuming than most state-of-
the-art evolutional algorithm literatures. In contrast, the
ILP and greedy algorithm always provide an alternative
low timing complexity solution. From [5], which con-
verts the classroom scheduling problem into a 0-1 ILP
problem, and its timing complexity is O(MxN+k), where
the parameter k indicates the number of course restric-
tions. Generally k is a constant value which means the
introduction of the greedy algorithm employed in this
paper is similar to the ILP approaches. Furthermore our
SmartClass framework is loose coupled to the proposed
scheduling algorithms, thus it leverages the modularity
of different resources and provides a promising metrics
to the combination with ILP approaches as well as other
scheduling algorithms.

5. EVALUATION OF EFFICIENCY AND OVERHEADS

In order evaluate the efficiency and overhead metrics of
the SmartClass architecture, we present a detailed quan-
titative results and data analysis.

5.1 Efficiency

The efficiency is a major concern of the scheduling algo-
rithm. We use a similar case as [19] to measure the effi-
ciency of the greedy based scheduling.

A large number of systematically designed experi-
ments have been performed on different number of
cases (5, 10, 15, 20) with differing complexity (15-course
simple, 15-course complex, and 20-course simple cases).
The complex cases and simple cases are defined in the
[19]. Table 4 is presented by the authors in [19], which
shows average percentages of successful retrievals

which have found either a partial or a complete match in
these cases.

TABLE 4.
AVERAGE PERCENT OF CLASSROOM SCHEDULING
PROBLEMS THAT FIND A MATCH IN THE CASE BASE

Number of 15-course 15-course 20-course
cases in the simple complex simple
case base case base case base case base
5 76.67% 78.3% 95%
10 90% 90% 95%
15 90% 98.33% 95%
20 90% 98.33% 95%

5.2 Overheads Evaluation

The advantage of the SmartClass is to alleviate the
burden of the terminal users. However, a side effect is
the communication overheads between the central
server and the terminal users. The overheads contain
two fold:

1) With respect to the execution on the server, it
would be favorable to evaluate the time required by the
algorithms to compute an output. We have evaluated
the execution time of classroom scheduling problems
that find a match. Experimental results in Table 5 and
Figure 6 demonstrate the execution time.

TABLE 5.
EXECUTION TIME OF CLASSROOM SCHEDULING PROBLEMS
(SECONDS)
Number of 15-course 15-course 20-course

lessons simple complex simple
5 10.51 11.00 15.01
10 12.92 13.47 19.96
15 14.55 16.01 21.40
20 17.99 19.07 28.99
30
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Fig. 6. Execution Time
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Experiments have shown that we can basically get a
linear execution time, which grows from 10.51 seconds
to 17.99 seconds, when the number of courses increases
from 5 to 20. Results on the execution time demonstrate
that the SmartClass approach is able to achieve a satisfy-
ing scalability.

2) Regarding the response time of the terminal users,
it will be also useful to measure the response time,
which stands for the data communication time between
the terminal users and the central server. We measured
the data communication overheads. Table 6 and Figure 7
demonstrate that the data transfer takes only less than
1.5 seconds while the execution takes more than 20 sec-
onds. The data transfer time is quite insignificant com-

results show that greedy based algorithm, in the overall,
performs better than SR and CF heuristic selection
methods. It is successful in particular when the problem
size grows. Our ultimate goal is to be able to solve the
classroom scheduling problem for the whole university.
The results show that the greedy algorithm is promising
in this aspect.

TABLE 7
PERFORMANCE RANKING OF DIFFERENT METHODOLOGIES
Dept  Classes Lectures Greedy Chmﬁce simple
function random
Dept. 1 200 64 2.5 2.5 2.5
Dept. 2 200 64 2 2 2
Dept. 3 400 128 2 2 2
Dept. 4 400 128 1 2 3
Dept.5 800 256 2 2 2
Dept. 6 800 256 1 2 3
Dept. 7 1600 512 1 2 3
Dept. 8 1600 512 1 2 3
Dept. 9 200 64 2.5 2.5 2.5
Average 1.67 2.11 2.56

paring to the execution.
TABLE 6.
DATA TRANSFER TIME OF CLASSROOM SCHEDULING
PROBLEMS (SECONDS)
Number of 15-course 15-course 20-course
cases in the simple complex simple

case base case base case base case base

5 0.09 0.11 0.19

10 0.18 0.21 0.36

15 0.36 0.38 0.72

20 0.71 0.74 1.43

Another perspective is the scalability analysis of the
data transfer time. Experiments have shown that the
data transfer time increases from 0.09 seconds to 0.71
seconds, when the number of courses increases from 5
to 20.
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Fig. 7. Data Transfer Time

5.3 Comparison with State-of-the-arts

To comparing our scheduling algorithm with the
state-of-the-art scheduling methodologies, we have
measured the performance rankings of our greedy
based scheduling, the choice function (CF) [15] schedul-
ing and simple random (SR) [16] scheduling. Table 7
illustrates the calculated success ratios (the ratio of suc-
cessful runs in which the optimal solution is found to
the total number of runs), the average best fitness values
and the average best duration values of the tests. The

5.4 Discussion of the Limitations

In this Section we discuss the limitations of the pro-
posed approach from the experimental results.

1) Due to that the classroom scheduling is a NP-
Complete problem; therefore in some cases the sched-
uler is not able to find an optimal result. As is revealed
from Section 5.1, the successful rate for the greedy
scheduling can achieve up to 98%, which is acceptable in
most cases.

2) Regarding the performance of the proposed approach
with state-of-the-arts, experimental results in Table 7.
The execution time of the greedy based scheduling is
much less than the SR and CF functions. Also, from the
timing complexity analysis in Section 4.3, the greedy
based approach has a very close complexity with the ILP
based approaches.

3) Scalability Analysis: A significant advantage against
state-of-the-arts is the scalability. As we use SOA archi-
tecture in the framework design, therefore the Smart-
Class can easily incorporate different scheduling algo-
rithms. Meanwhile, the communication overhead is
quite scalable with the increase of the number of courses.

6. CONCLUSION AND FUTURE WORK

This paper has proposed SmartClass, which introduces
services-oriented concept into conventional classroom
scheduling approach. Each type of resources is ab-
stracted as a service and the services are provided to the
terminal users. Greedy based scheduling is incorporated
into the SmartClass framework to calculate the results.
Experimental results on case studies illustrate that
SmartClass can efficiently improve the flexibility and
scalability. Due to that the SmartClass architecture oper-
ates the scheduling process at server side, therefore it
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could significantly alleviate the burden of the educa-
tional programmers.

The initial results are promising but the study is still
undergoing since there are a lot of directions worth pur-
suing. Future work includes following subjects: First, we
are to extend the server to distributing cloud systems to
achieve high throughput and integration of services.
Second, we also plan to integrate the timing interval
design-space-exploration into the scheduling scheme to
get optimized solution. Last but not least, the greedy
strategy utilized in this paper could be replaced by other
alternative scheduling schemes, such as the ILP and
graph theoretical methodologies.
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