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Since nxxx ,...,, 21 is public, we can get Lagrange 

coefficients in advance: 
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Thus, the formula to recover the secret k can be put in a 

simpler way: 
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2.2 Security Assumptions 

2.2.1 Semi-trusted Server 

LDSS is designed under the same assumptions proposed 
in 0 that the CSP is honest but curious, which means that 
the CSP will faithfully execute the operations requested 
by users, but it will peek on what users have stored in the 
cloud. The CSP will faithfully store users’ data, undertake 
an initial access control, update data according to users’ 
requests. However, CSP may do malicious actions such as 
collusion with users to get the data in plain text. 

In LDSS, proxy encryption server and proxy 
decryption server are introduced to assist users to encrypt 
and decrypt data so that user-side overhead can be 
minimized. In essence, proxy servers are also machines in 
the cloud. Thus, we consider that they are honest but 
curious just as the CSP. 
2.2.2 Trusted Authority 

In this paper, to make LDSS feasible in practice, a trusted 
authority (TA) is introduced. It is responsible of 
generating public and private keys, and distributing 
attribute keys to users. With this mechanism, users can 
share and access data without being aware of the 
encryption and decryption operations. 

We assume TA is entirely credible, and a trusted 
channel exists between the TA and every user. The fact 
that a trusted channel exists doesn’t mean that the data 
can be shared through the trusted channel, for the data 
can be in a large amount. TA is only used to transfer keys 
(in a small amount) securely between users. In addition, 
it’s requested that TA is online all the time because data 
users may access data at any time and need TA to update 
attribute keys. 
2.2.3 Lazy Re-encryption 

In ciphertext access control, data needs to be re-encrypted 
when some users’ access privileges to the data are 
revoked. However, frequent re-encryption brings heavy 
computational overhead, and the accessed plaintext data 
may already be stored on these data users. Therefore, this 
paper adopts the lazy re-encryption method proposed in 
[3]. With lazy re-encryption, when a user’s access 
privilege is revoked, data is not re-encrypted until the 
data owner updates the data. 

In our approach, when the data owner revokes a user's 

privilege, the file of the access control policy that contains 
these attributes will be marked. Later, when the data 
owner updates this file, it first checks the mark to see if it 
has been marked as revoked. If that is the case, this file 
will be re-encrypted. 

3 OUR PROPOSED MECHANISM 

In this section, we describe the LDSS system design. First, 
we give the overview of LDSS, and then we present 
LDSS-CP-ABE algorithm and system operations, which 
are the base of LDSS algorithm. Finally, we describe LDSS 
in details.  

3.1 Overview 

We propose LDSS, a framework of lightweight data-
sharing scheme in mobile cloud (see Fig. 1). It has the 
following six components. 

(1) Data Owner (DO): DO uploads data to the mobile 
cloud and share it with friends. DO determines the access 
control policies. 

(2) Data User (DU): DU retrieves data from the mobile 
cloud. 

(3) Trust Authority (TA): TA is responsible for 
generating and distributing attribute keys.  

(4) Encryption Service Provider (ESP): ESP provides 
data encryption operations for DO. 

(5) Decryption Service Provider (DSP): DSP provides 
data decryption operations for DU. 

(6) Cloud Service Provider (CSP): CSP stores the data 
for DO. It faithfully executes the operations requested by 
DO, while it may peek over data that DO has stored in 
the cloud. 

As shown in Fig. 1, a DO sends data to the cloud. Since 
the cloud is not credible, data has to be encrypted before 
it is uploaded. The DO defines access control policy in the 
form of access control tree (refer to Definition 2 in Section 
3.2) on data files to assign which attributes a DU should 
obtain if he wants to access a certain data file. In LDSS, 
data files are all encrypted with the symmetric encryption 
mechanism, and the symmetric key for data encryption is 
also encrypted using attribute based encryption (ABE). 
The access control policy is embedded in the ciphertext of 
the symmetric key. Only a DU who obtains attribute keys 
that satisfy the access control policy can decrypt the 
ciphertext and retrieve the symmetric key. As the 
encryption and decryption are both computationally 
intensive, they introduce heavy burden for mobile users. 
To relieve the overhead on the client side mobile devices, 
encryption service provider (ESP) and decryption service 
provider (DSP) are used. Both the encryption service 
provider and the decryption service provider are also 
semi-trusted. We modify the traditional CP-ABE 
algorithm and design an LDSS-CP-ABE algorithm to 
ensure the data privacy when outsourcing computational 
tasks to ESP and DSP.  
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Similarly, for the nodes in the right subtree, let SKv-

1=grv, SKv-2=gr  Xvrv, CTv-1= gSv, CTv-2=XvSv, then 

DecryptLeaf(CTv, SKu’, V)=
2)CTv1,e(SKv
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The specific process of step 4 is as follows. 
For a non-leaf node x, assume that z is a child of x, then 

Fz = DecryptLeaf(CTa, SKu’, z)= e(g, g)qz(0). 

Let Sx be the set of x’s children, and the size of Sx is kx，

let 
'( ), { ( ) : }x xi index x S index z z S   , according to secret 

sharing scheme(refer to section 2.1.3), we can get: 
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3.3 Attribute Description Field in LDSS-CP-ABE 

Attribute description field is introduced in LDSS for 
dynamic user privilege management. It keeps access 
control strategy secret against the cloud. 

To better illustrate the attribute description field, we 
have the following definitions. 

Definition 4: Attribute Description Field. Attribute 
description field is a string of binary bits, which describes 
attribute information related to DO, DU and data files. 

Definition 5: Attribute Description Bit. Attribute 
description bit is every bit in Attribute description field 
corresponding to an attribute.  

Clearly, attribute description field is composed of 
several attribute description bits. The size of attribute 
description field equals to the number of elements in the 
attribute set A. Each DO defines its own set of attributes. 
Attribute description fields of different DOs are used to 
control accesses on their own data files, thus they might 
have different meanings. 

There are three kinds of Attribute Description fields, 
namely, the Attribute Description field of DO, the 
attribute description field of DU and the attribute 
description field of data file. 

The attribute description field of DO is generated by 
the TA. When a data owner registered with TA, it sends 
its own attribute set to TA. TA then generates attribute 
description field, in which each attribute bit represents a 
value in G0. TA keeps the attribute description field in the 
DO-PK/MK-information table. The attribute description 
field of DO is shown in Fig. 4. 

The attribute description field of a data user (DU) is 
generated by TA and the cloud under the supervision of 
the data owner. TA and the cloud keep it in contacts-
information table. TA and the cloud keep up-to-date 
information of DU’s attribute description fields according 
to the data owner. Each data user also maintains an 
attribute description field which may contains out-dated 
control information. Data users obtain their attribute 
description fields from TA when TA generates attribute 
keys for them. The attribute description field is sent 
together with the attribute keys. In the attribute 
description field of DU, every bit is either 1 or 0. A 1 
denotes that the DU owns the attribute while a 0 denotes 
the opposite. For example, if the data owner has 5 
attributes, a sample attribute description field is shown in 
Fig. 5. 

The attribute description field of data files is stored on 
DO. It represents which attributes are assigned in data 
files’ access control policy. If an attribute is included in the 
access control policy, the corresponding bit in the 
description field is 1, otherwise it’s 0. ‘#’ may appear in 
the attribute description field when an attribute is 
included in the access control policy and some data users 
have this attribute revoked. For a data owner who has 
five attributes, an example of the attribute description 
field of data files is shown in Fig. 6. 

Assume the data owner’s attribute set is {A, B, C, D, E}, 
and it has a file of which the access control policy is “A 
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Fig. 4. The attribute description field of data owner. 
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Fig. 6. The attribute description field of data files. 
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Fig. 5. A sample attribute description field of data user. 
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and C and D and E”. A contact of the data owner has 
three attributes: {A, C, D} and C is revoked. Then the 
description field of this data file is shown in Fig. 6. 

To enforce access control, the access control policy 
should be uploaded to the cloud. It is also described by 
multiple attribute description bits, which is a combination 
of 1 and 0. Thus, it can protect the access control policy 
against the cloud. 

3.4 System Operations of LDSS 

LDSS scheme is designed for data sharing in mobile cloud. 
The whole process of LDSS includes system initialization, 
file sharing, user authorization, and file access operations. 
It also has to support attribute revocation and file update 
operations. 
3.4.1 System Initialization 

In system initialization, Function 1 is executed. The 
specific process is described as follows. 

(1) When the data owner (DO) registers on TA, TA runs 

the algorithm Setup() to generate a public key PK and a 

master key MK. PK is sent to DO while MK is kept on TA 

itself. 
(2) DO defines its own attribute set and assigns 

attributes to its contacts. All these information will be sent 
to TA and the cloud. 

(3) TA and the cloud receive the information and store 
it. 
3.4.2 File Sharing 

The process of file sharing uses Function 3 to encrypt data 
files. The specific process is described as follows. 

(1) DO selects a file M which is to be uploaded and 
encrypts it using a symmetric cryptographic mechanism 
(such as AES, 3DES algorithm) with a symmetric key K, 
generating ciphertext C. 

(2) DO assigns access control policy for M and encrypts 
K with the assistance of ESP using Function 3, generating 
the ciphertext of K (CT). 

(3) DO uploads C, CT and access control policy to the 
cloud. 
3.4.3 User Authorization 
The process of user authorization executes Function 2 to 
generate attribute keys for data users. The specific process 
is described as follows. 

(1) DU logins onto the system and sends, an 
authorization request to TA. The authorization request 
includes attribute keys (SK) which DU already has. 

(2) TA accepts the authorization request and checks 
whether DU has logged on before. If the user hasn’t 
logged on before, go to step (3) , otherwise go to step (4). 

(3) TA calls Function 2 to generate attribute keys (SK) 
for DU. 

(4) TA compares the attribute description field in the 
attribute key with the attribute description field stored in 
database. If they are not match, go to step (5), otherwise 
go to step (6). 

(5) For each inconsistent bit in description field, if it is 1 
on data user’s side and 0 on TA’s side, it indicates that 
DU’s attribute has been revoked, then TA does nothing on 
this bit. If it is reversed scenario, it indicates that DU has 
been assigned with a new attribute, then TA generates the 

corresponding attribute key for DU. 
(6) TA checks the version of every attribute key of DU. 

If it’s not the same with the current version, then TA 
updates the corresponding attribute key for DU. 

In the stage of user authorization, TA updates attribute 
keys for DU according to the attribute description field, 
which is stored with SK. It describes which attributes DU 
has and their corresponding versions. TA also keeps 
attribute description field of DU in database. When DO 
changes the attribute of DU, the attribute description field 
on the TA side is also updated. Thus, when DU logins on 
the system, the attribute description field on itself may be 
different from that of TA. TA has to update the attribute 
keys for DU according to the attribute description field 
just as described above. 
3.4.4 Access Files 

When DU requests to access a certain data file, Function 4 
is used to decrypt data. The specific process is described 
as follows: 

(1) DU sends a request for data to the cloud. 
(2) Cloud receives the request and checks if the DU 

meets the access requirement. If DU can’t meet the 
requirement, it refuses the request, otherwise it sends the 
ciphertext to DU. 

(3) DU receives the ciphertext, which includes 
ciphertext of data files and ciphertext of the symmetric 
key. Then DU executes the Function 4 to decrypt the 
ciphertext of the symmetric key with the assistance of DSP. 

(4) DU uses the symmetric key to decrypt the 
ciphertext of data files. 
3.4.5 Privilege Revoked 

DO can revoke attributes from a DU. The process is as 
follows. 

(1) DO informs TA and the cloud that one attribute has 
been revoked from a specific DU. 

(2) TA and the cloud update the information of DU in 
database. 

(3) DO marks the corresponding bit of the attribute 
description field of data files. 

This strategy implements the asynchronous processing 
of attribute revocation and attribute keys update 
operations. When DO wants to revoke one attribute from 
a DU, TA only updates the database and doesn’t update 
attribute keys for DU simultaneously. 
3.4.6 Documentation Updates 

As a result of lazy re-encryption, when DO revokes 
one attribute from a DU, the revoked attribute is not 
updated. When the data file is updated, if it has one 
attribute that has been revoked, this attribute should be 
updated. The specific process is as follows. 

(1) DO checks if there is any bit in the description field 
of data files has been set to ‘#’. 

(2) DO informs TA which attributes should be updated. 
All the attributes that should be updated form a set is 
called Anew. 

(3) TA chooses a new value in G0 for every attribute in 
Anew to replace the original one, and updates the 
description field of DO in DO-PK/MK table, changing the 
corresponding attribute description bit to the new value. 

(4) TA sends a new PK to DO, and DO uses the new PK 
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to encrypt data files. 
(5) DO sets the ‘#’ bit of the description field of the 

corresponding data file to 1. 
This operation is critical for lazy re-encryption. If the 

system updates attributes immediately after the attribute 
revocation operation, excessive overhead occurs. Taking 
into account that DU already know the content of a data 
file after accessing it, there is no need to re-encrypt this 
data file with a new symmetric key immediately. The DU 
who has been revoked the access privileges should not be 
able to access the updated content. In this situation, the 
system should re-encrypt the data file. Thus, in LDSS, 
attribute updates are delayed until related data files are 
updated. In order to decide which attribute should be 
updated, the corresponding bit in the description field 
has to be marked as ‘#’. 

4 SECURITY ANALYSIS 

The security assessment is based on the security 
assumptions we described in Section 3. The possible 
scenarios that malicious users may expose plaintext to 
others are not discussed. 

4.1 Security Analysis of LDSS-CP-ABE 

LDSS-CP-ABE algorithm is designed on top of Attribute-
Based Encryption (ABE). The security of ABE is based on 
the bilinear diffie-hellman assumptions. 

Bilineardiffie-hellman assumptions: When attackers 

only have a, b, c, z  Zp, there exists no polynomial 

algorithm that can get the relationship between (A=ga, 

B=gb, C=gc, Z=e(g, g)ab/c) and  (A=ga, B=gb, C=gc, Z=e(g, g)z). 

In other words, attackers cannot get Z=e(g, g)z that 

corresponds to e(g, g)ab/c. 
The security of CP-ABE is proved in BSW CP-ABE [27] 

based on above assumptions. Since LDSS-CP-ABE is a 
variation of the original BSW CP-ABE, the structure of the 
ciphertext used in LDSS-CP-ABE is similar to that of 
original BSW CP-ABE, thus the encryption and 
decryption processes are safe. The difference between our 
work and BSW CP-ABE is that a version attribute is 
added to the access control tree. It only changes the 
structure of the access tree slightly. It contains two sub 
trees in our work: Ta and Tv. If a DO chooses a first-order 
polynomial q (x), and let S = q(0), S1 = q (1), S2 = q (2). The 
tuple {S1, Ta} is sent to ESP. According to the secret 
sharing scheme, even if S1 is exposed to DO, S2 and S are 
safe. 

4.2 Data Confidentiality against Conspiracy 

The data confidentiality is taken into account from two 
aspects. In LDSS, data are encrypted with a symmetric 
key. The security of this part is guaranteed by symmetric 
encryption mechanism. Next, the symmetric key is 
encrypted by attribute encryption. The security of this 
part depends on the encryption process. 

The security of the core algorithm in the encryption 
process is proved in the previous section. Here, we 

discuss the situation that the symmetric key is safe even if 
a malicious user, ESP and DSP conspired to get the key. 
The conspiracy attack can be divided into several kinds, 
namely conspiracy between different users, DSP and ESP, 
users and cloud. 

First, consider the conspiracy between different users. 
It can be proven that different users with different 
attributes cannot combine their attributes to decrypt data 
files. Since users get different r from TA, which is used to 
generate attribute keys for users, different users with 
same attributes get different keys. When decrypting data 
files, only when all the keys are generated from the same 
r can they be combined to decrypt data files, thus 
effectively preventing the conspiracy between users. 

Second, consider the conspiracy between ESP and DSP. 
ESP gets {S1 , Ta} and PK from DO and TA, and DSP gets 
SKu’, CT from DU. Combining all these information, ESP 
and DSP can finally get Sratgge /)(),(  , rSgge ),( , agge ),( , 
which cannot deduce aSgge ),(  thanks to the bilinear 
diffie-hellman assumptions, thus protecting CTk. 

Last, consider the conspiracy between the cloud and 
DU. The cloud may send data packets to whom do not 
meet the access control policy. However, even if DU 
illegally obtains ciphertext, it cannot get the plain context 
since it doesn’t have the right attribute keys. 

4.3 Confidentiality of Access Control Policy 

The security of access control policy is that no 
participants could know the specific content of the access 
control policy except data owners. LDSS introduces 
attribute description field so that access control policy is 
described by the corresponding attribute description bit. 
ESP and the Cloud can only get the relationships between 
different attribute description bits, but not the specific 
content of access control strategy, thus protecting the 
access control strategy. 

5 PERFORMANCE EVALUATION 

In this section, we evaluate the performance of LDSS in 
terms of computational and storage overheads, 
respectively. 

5.1 Experimental Settings 

To evaluate the efficiency of the proposed solution, we 
conduct several experiments. The test of LDSS is done on 
a Core 2 DUO machine, which has 2.0GHz CPU with the 
Linux operating system (Ubuntu 12.10) installed. 

The core algorithm of LDSS takes advantage of the CP-

ABE tools developed by Bethencourt et al [15]. It’s based 

on 160-bit elliptic curve group, which derives from the 

super singular curve xxy  32

 over a 512-bit finite field. 

CP-ABE tools have three basic operations, namely 

exponentiation and pairing on G0 and exponentiation on 

G1. These three operations take 4.99ms, 4.98ms and 

0.58ms respectively in our experimental environment. 
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The cost of access control mechanisms is closely related 
to the size of access control policy. To reflect closely to the 
reality, in our experiment, the number of attributes owned 
by individual users is fixed, and the size of access control 
policy varies. We assume that the average number of 
attributes owned by DO is 10, and the number of 
attributes included in the access policies varies from 1 to 
32.  

In order to simplify the representation, we define the 
following symbols: 

|A|:  The number of attributes owned by DO. 
|Au| :  The number of attributes owned by DU. 
|Ta|: The number of leaf nodes in the access control 

tree . 
|T|: The number of leaf nodes in the access control 

tree with version attribute, and |T| = |Ta| +1. 
LG0, LG1, Lz: The size of an element in G0 group, G1 

group and Z. 
T_G0: The time needed for exponentiation operation in 

group G0. 
T_Gm: The time needed for multiplication operation in 

group Gm. 
T_Ge: The time needed for pairing operation in group 

G0. 
T_G1: The time needed for exponentiation operation in 

group G1. 

5.2 Computational Overhead Evaluation 

We first evaluate the computational overhead of LDSS 
and compare it with existing access control schemes. 
5.2.1 Computational Overhead of LDSS 

According to [26], the basic operations of attribute based 
encryption mechanisms (pairing, exponentiation, 
multiplication) vary a lot between mobile devices and 
PCs. The experimental results are shown in Table 1. 

It is clear that a single pairing operation, 
exponentiation operation, multiplication operation take 
much longer time on mobile devices than on PCs, which 
is 27, 35 and 38 times of that on PCs. We focus the 
analysis of computational overhead on pairing operation 
and exponentiation operation. Other operations that take 
little time are ignored. 

(1) User registration 
The overhead of user registration comes from the 

function Setup(), which only needs to be executed once 
and the overhead is on the TA’s side. The main overhead 
of this execution includes one exponentiation operation 
and one pairing operation on G0 and one exponentiation 

operation on G1, namely. The main overhead is: T_G0 + 
T_Ge + T_G1. 

(2) Data sharing 
The cost of data sharing comes from the execution of 

the function Encryption(), which is executed every time 
when sharing data files. The function Encryption() 
includes exponentiation operation on G0 (the number of 
operations is proportional to the number of attributes 
included in the access strategy) and one exponentiation 
operation on G1. The cost of this function depends on 
which one does the encryption operation. Before 
introducing ESP, the cost is on DO. After the usage of ESP, 
the cost on DO is reduced to a constant value, and is no 
longer associated with the number of attributes in access 
control strategies. The overhead on ESP and DO is shown 
in Table 2. 

(3) User authorization 
The cost of user authorization comes from function 

KeyGen(), which is executed the first time a DU tries to 
read a DO’s data. TA executes this function for 
authorization. It includes exponentiation on G0 and 
multiplication on G0, of which the number is proportional 
to the number of attributes owned by DU . The overhead 
is: (2 |Au| +1) T_G0 + |Au| T_Gm. 

(4) Accessing data files 
The cost of accessing data files comes from function 

Decryption(), which is executed every time a file is 
accessed. This function includes pairing operations on G0, 
multiplication operations on G0 and exponentiation 
operation on G1. The number of these three kinds of 
operations is all proportional to the number of attributes 
included in the access strategy. The cost of accessing data 
files depends on which one does the decryption operation. 
Before introducing DSP, the overhead is on DU. After the 
introduction of DSP, the cost on DU is reduced to a 
constant value. The overhead of decryption is related to 
the number of attributes involved in the data file and how 
these attributes are combined. In the worst case, all the 
attributes keys related to the access control strategy are 
needed for decryption. In this case, the overhead of ESP 
and DO is shown in Table 3. 

 TABLE 1 
COMPUTATIONAL OVERHEAD OF BASIC OPERATIONS OF ABE 

SCHEMES 

Types of 

Devices 
Pairing Exponentiation Multiplication 

PC 20 ms 5 ms 0.7 ms 

Mobile 550 ms 177 ms 26 ms 

 

TABLE 2 
COMPUTATIONAL OVERHEAD OF DATA SHARING 

 
Exponentiation 

on G0 

Exponentiation 

on G1 
Paring on G0 

ESP 2|Ta| 0 0 

DO 3 1 0 

TABLE 3 
COMPUTATIONAL OVERHEAD OF DATA ACCESS 

 
Exponentiation 

on G0 

Exponentiation 

on G1 
Paring on G0 

DSP 0 |Ta| 2|Ta|+1 

DO 0 1 0 
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(5) User revocation 
LDSS uses lazy re-encryption. If there is user 

revocation operation, TA and the cloud only need to 
update the contact-attribute-information table. Only 
when data files are updated should the attributed be 
updated and data files be re-encrypted. As a result, 
multiple revocation operations are merged into one, 
reducing the overall overhead. The cost of data re-
encryption is the same with sharing data files. Thus, no 
further discussion is placed here.  
5.2.2 Computational Overhead with Different CP-ABE 

Schemes 

DO’s overhead in different ABE schemes is shown in 
Table 4. As shown in Table 4, in existing programs, the 
overhead on mobile user DU’s side is proportional to the 
number of attributes in access control policy. In LDSS, the 
overhead is a small constant value. 
5.2.3 Measurement of Computational Overhead of 

LDSS 

We measure the computational overhead of LDSS 
through experiments. The results are as follows. 

(1) Registration cost 
The average registration time for a single user is 50ms. 
(2) Authorization cost 
The time needed for authorization is proportional to 

the number of attributes owned by DU. Fig. 7 shows the 
time needed for user authorization when the number of 
attributes owned by user is 2,4,8,16,32. 

As can be seen in Fig. 7, the time of authorization is 
proportional to the number of attributes in both BSW CP-
ABE [27] and LDSS. 

In both scenarios, the authorization time is still lower 
than 1s when the number of attributes rises to 32. 
Authorization time in LDSS is just slightly longer because 
it introduces the version attribute. 

(3) The cost of encryption and decryption 

The time needed for encryption and decryption is 
shown in Fig. 8.  

As can be seen from Fig. 8, the overhead of encryption 
and decryption operations is proportional to the number 
of attributes in access control policy. In LDSS, it takes a 
little longer. Besides, the encryption and decryption time 
are lower than 1s when the number of attributes rises to 
32 in both schemes. 

Fig. 9 shows how the overhead on user side in BSW 
CP-ABE and LDSS changes with the size of access control 
policy. In LDSS, since the main encryption and decryption 
operations are given to the proxy server, the overhead on 
users’ side is basically a constant value, on longer 
changing with the size of access control policy. 

(4) The overhead of user revocation 

 

Fig. 7. The computational overhead of authorization. 

 

Fig. 9. The relationship between users’ overhead and the size of 
access control policy. 

 

Fig. 10. The overhead of attribute revocation. 

TABLE 4 
COMPUTATIONAL OVERHEAD WITH DIFFERENT CP-ABES 

 Bethencourt  BSW CP-ABE LDSS 

Data 

sharing 

(2|Ta|+1)T_  

G0+T_G1 

(4|Ta|+1)T_  

G0+T_G1 
3T_G0+T_Gm 

Data 

access  
(2|Au|+1)T_Ge (2|Au|+1)T_Ge T_G0+T_Gm 

 

 

Fig. 8. The relationship between encryption and decryption time and 
the size of access control policy. 
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From the above analysis, the main overhead of user 
revocation comes from user attribute update operations. 
The overhead is related to the number of revoked 
attributes and related users. Assume that there are 32 
attributes in the attribute set, and the average number of 
attributes owned by DU is 10. Fig. 10 shows how the 
overhead of user revocation changes with the number of 
data users when the number of revoked attributes is 2 
and 4, respectively. 

As shown in Fig. 10, the overhead of user revocation is 
proportional to the number of data users, and LDSS 
works better than other CP-ABE. When the number of 
revoked attributes grows bigger, this advantage becomes 
more obvious. 

In a word, the experimental results show that LDSS 
reduces the overhead on users’ side significantly at a 
small cost of the overall growth on storage and 
computation. It also performs better in user revocation 
operations.  

5.3 Storage Overhead Evaluation 

We also evaluate the storage overhead of LDSS and 
compare it with existing CP-ABE schemes. 
5.3.1 Storage Overhead with Different CP-ABE 

Schemes 

DO needs to keep PK, which is of the size (|A|+3)LG0+ LG1. 
DU also needs to keep SK, which is of the size (|Au|+4) 
LG0. TA needs to keep PK and MK. MK is of the size LG0. 
The cloud needs to keep the symmetric key ciphertext CT, 
which is of the size (2|Ta|+3) LG0+ LG1. DSP / ESP only do 
calculations and need not retain any value. 

Table 5 shows the comparison of storage overhead 
with different CP-ABE schemes. 
5.3.2 Measurement of Storage Overhead of LDSS 

LDSS is based on 160-bit elliptic curve group, which is 
derived from the super singular curve xxy  32  over a 
512-bit finite field. The size of LG0、LG1、Lz is 40B, 64B 
and 20B, separately. 

In LDSS, the storage overhead needed for access 
control is the storage of PK/MK, SK and CT. PK and MK 
is 156B and 888B separately. The size of CT grows with 
the number of attributes in access control policy and the 
size of SK grows with the number of attributes in DU’s 
attribute set. 

When sharing data files, the data files is encrypted 
with symmetric key, then the symmetric key itself is 
encrypted by CP-ABE. Since the size of data files remains 
the same after encryption, we only evaluate the size 

change of the symmetric key. 
Fig. 11 shows the size of symmetric key after 

encryption when the number of attributes in access 
control policy is 1, 2, 4, 8, 16 and 32. It can be concluded 
that the size of ciphertext rises with the number of 
attributes in access control policy in both BSW CP-ABE 
[15]  and LDSS. The size of symmetric key ciphertext of 
BSW CP-ABE is a little bigger than that of LDSS. When 
the number of attributes rises to 32, the size of symmetric 
key ciphertext is smaller than 10KB in both schemes, 
which is very small compared to the data files. 

For DU authorization, the size of SK is linear with the 
number of attributes in DU’s attribute set. Fig. 12 shows 
the size of SK when the number of attributes in DU’s 
attribute set is 2, 4, 8 and 32, respectively. 

When the number of attributes in the attribute set rises 
to 32, DU’s SK is smaller than 1KB in both schemes, which 
is very small compared to the size of data files. The size of 
SK in LDSS is a little bigger for introducing an attribute 
version, but the difference is small.  

In sum, in LDSS, the storage overhead needed for 
access control is very small compared to data files.  

5.4 Communication Overhead Evaluation 

The communication overhead of access control happens 
when TA sends keys to DO/DU at the stage of system 
initialization and user authorization, and DO/DU 
encrypt/decrypt the symmetric key which is used to 
encrypt the data files. According to the experimental 

TABLE 5 
STORAGE OVERHEAD WITH DIFFERENT CP-ABES 

CP-ABEs PK MK SK CT 

BSW[27] 3 LG0+ LG1 Lz+ LG0 (2|Au|+1) 

LG0 

(2|Ta|+1) 

LG0+ LG1 

Waters[30] (|A|+2) 

LG0+ LG1 

LG0 (|Au|+2) 

LG0 

(2|Ta|+1) 

LG0+ LG1 

LDSS 3 LG0+ LG1 LG0 (|Au|+4) 

LG0 

(2|Ta|+3) 

LG0+ LG1 

 

 

Fig. 12. The storage overhead of SK. 

 

Fig. 11. The relationship between symmetric key ciphertext and 
access control policy. 
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results of Section 5.3, the key sent to TA is the MK of size 
888B. The keys sent to DU are the attribute keys which are 
8969B when the number of attributes owned by DU rises 
to 32. According to function 3 and 4, intermediate results 
of encryption/decryption transferred between DO/DU 
and ESP/DSP are of the size smaller than CT, which is 
lower than 10000B. Since the transferred data are in small 
amount, the communication cost is negligible. 

6 RELATED WORKS 

In this section, we focus on the works of ciphertext access 
control schemes which are closely related to our research. 

Access control is an important mechanism of data 
privacy protection to ensure that data can only be 
acquired by legitimate users. There has been substantial 
research on the issues of data access control in the cloud, 
mostly focusing on access control over ciphertext. 
Typically, the cloud is considered honest and curious. 
Sensitive data has to be encrypted before sending to the 
cloud.  

User authorization is achieved through key 
distribution. The research can be generally divided into 
four areas: simple ciphertext access control, hierarchical 
access control, access control based on fully 
homomorphic encryption [1][2] and access control based 
on attribute-based encryption (ABE).  

Simple ciphertext access control refers to that after data 
file encryption, the encryption keys are distributed in a 
secure way to achieve authorization for trusted users [3]. 
To reduce the overhead of massive user key distribution, 
Skillen and Mannan [4] designed a system called 
Mobiflage that enables PDE (plausibly deniable 
encryption) on mobile devices by hiding encrypted 
volumes via random data on a device’s external storage. 
However, the system needs to obtain large amount of 
information of keys. [5] borrows the access control 
method used in  conventional distributed storage 
[4][6][12][14], separating users into different groups 
according to access rights and assign different keys to 
groups. This reduces the overhead of key management, 
but it cannot satisfy the demand for fine-grained access 
control. 

Hierarchical access control has good performance in 
reducing the overhead of key distribution in ciphertext 
access control [7]. As a result, there are substantial 
research on ciphertext access control [8][9][10][11] based 
on hierarchical access control method. In hierarchical 
access control method, keys can be derived from private 
keys and a public token table. However, the operation on 
token table is complicated and generates high cost. 
Besides, the token table is stored in the cloud. Its privacy 
and security cannot be guaranteed [12].  

Full homomorphic encryption algorithm can operate 
directly on the ciphertext. Its operating results are the 
same with operating on plaintext and then encrypting the 
data. [13] uses full homomorphic encryption algorithm to 
do operations such as retrieval and calculation directly on 
ciphertext. It can solve the problem that the cloud is 
untrustworthy fundamentally because all data update 

operations and user privilege change operations can be 
done directly on ciphertext. However, this encryption 
scheme is too complex to implement in practical 
applications.   

Attribute-based encryption algorithm is derived from 
identity-based encryption. It embeds decryption rules in 
the encryption algorithm, which avoids frequent key 
distribution. Lai et al [14] and Bethencourt et al [15] 
proposed key-policy attribute-based encryption (KP-ABE) 
and ciphertext-policy attribute-based encryption (CP-
ABE). In practical applications, CP-ABE has been 
extensively studied [16][17][18] since it is similar to role-
based access control (RBAC) scheme [19]. In CP-ABE, the 
possession of one attribute key means that the key owner 
owns corresponding attribute, and attribute keys cannot 
be reclaimed once they are distributed. As a result, when 
a data user’s attribute is revoked, how to ensure data 
privacy becomes a difficult issue [14]. Liang et al [16] 
propose attribute-based proxy re-encryption (ABPRE) 
scheme to solve this problem. However, in their solution, 
when a user’s attribute is revoked, all other users who 
own this attribute will lose this attribute at the same time, 
which cannot satisfy fine-grained access control needs. 
Tian et al [20] combine CP-ABE and public key 
cryptography to achieve ciphertext access control. 
However, it brings high cost to data owners. Di Vimercati 
et al [21] add a time stamp to attributes to limit the use of 
attribute keys to deal with attribute revocation problem. 
However, in this scenario, data users need to periodically 
apply for attribute keys and the users’ attribute cannot be 
revoked before the time stamp expires. Yu et al [22] 
propose some work of revocation can be outsourced to 
CSP, whereas CSP should have a certain credibility, and 
access control policy that contains “or” relationship or 
“threshold” relationship is not supported. Yu et al [23] 
also proposed a scheme to address the cloud computing 
challenging that keep sensitive user data confidential 
against untrusted servers by exploiting and uniquely 
combining techniques of attribute-based encryption 
(ABE), proxy re-encryption, and lazy re-encryption. Yang 
et al. [22] proposed a novel scheme that enabling efficient 
access control with dynamic policy updating for big data 
in the cloud that focusing on developing an outsourced 
policy updating method for ABE systems. It also 
designed policy updating algorithms for different types 
of access policies. 

All the above works focus on the issue of data access 
control in the cloud. They are mainly for non-mobile 
devices and cannot be applied for data sharing in mobile 
cloud environment. Regarding to data privacy in mobile 
cloud, some works have been done in this field [23]. 
Huang et al [24] propose MobiCloud, in which traditional 
Mobile Ad-hoc NETworks (MANETs) is transformed into 
service-oriented communication architecture. In this 
architecture, each mobile device is regarded as a service 
node, and the operations are outsourced to the cloud. 
However, in MobiCloud, users need to completely trust 
the cloud, which is not the case in reality. Livshits and 
Jung [25] designed and implemented a graph theoretic 
algorithm to place mediation prompts that protect every 
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resource access, while avoiding repetitive prompting and 
prompting in background tasks or third-party libraries, 
for the problem of mediating resource accesses in mobile 
applications. Zhou et al [26] proposed an ABDS scheme to 
achieve secure data storage in the cloud. However, this 
scheme is not suitable for data sharing and has no clear 
solution for attribute revocation. Tysowski et al. [27] 
considered a specific cloud computing environment 
where data are accessed by resource-constrained mobile 
devices, and proposed novel modifications to ABE, which 
assigned the higher computational overhead of 
cryptographic operations to the cloud provider and 
lowered the total communication cost for the mobile user.  

In summary, current proposals on data access control 
in the cloud are mostly for non-mobile terminals, which is 
not suitable for mobile devices. Besides, current solutions 
don’t solve the problem of user privilege change scenarios 
very well since they bring high revocation cost. This is not 
applicable for mobile devices which only have limited 
computing capacity and power. Existing studies on 
mobile cloud don’t have a good solution to secure data 
sharing when servers are not credible. In a word, there is 
no proper solution that can solve the problem of secure 
data sharing in mobile cloud. In this paper, we propose a 
lightweight data sharing scheme (LDSS) for mobile cloud 
applications. It adopts CP-ABE, a technology used in 
access control in the normal cloud environment, but 
changes the structure of access control tree to make it 
suitable for mobile cloud. LDSS is provably secure, and is 
demonstrated to be more efficient and scalable than state-
of-the-art ABE schemes. 

7 CONCLUSION AND FUTURE WORK 

In recent years, many studies on access control in cloud 
are based on attribute-based encryption algorithm (ABE). 
However, traditional ABE is not suitable for mobile cloud 
because it is computationally intensive and mobile 
devices only have limited resources. In this paper, we 
propose LDSS to address this issue. It introduces a novel 
LDSS-CP-ABE algorithm to migrate major computation 
overhead from mobile devices onto proxy servers, thus it 
can solve the secure data sharing problem in mobile cloud. 
The experimental results show that LDSS can ensure data 
privacy in mobile cloud and reduce the overhead on 
users’ side in mobile cloud. In the future work, we will 
design new approaches to ensure data integrity. To 
further tap the potential of mobile cloud, we will also 
study how to do ciphertext retrieval over existing data 
sharing schemes. 

ACKNOWLEDGMENT 

 
This work is supported by National Natural Science 
Foundation of China under grants 61173170, 61300222, 
61370230, 61433006 and U1401258, Innovation Fund of 
Huazhong University of Science and Technology under 
grants 2015TS069 and 2015TS071, Science and Technology 
Support Program of Hubei Province under grant 
2014BCH270 and 2015AAA013, Science and Technology 

Program of Guangdong Province under grant 
2014B010111007, and and Youth Talent Project of Science 
and Technology Research Program of Hubei Provincial 
Education Department under grant Q20151111. 

REFERENCES 

[1] Gentry C, Halevi S. Implementing gentry’s fully-homomorphic 

encryption scheme. in: Advances in Cryptology–EUROCRYPT 

2011. Berlin, Heidelberg: Springer press, pp. 129-148, 2011. 

[2] Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic 

encryption from (standard) LWE. in: Proceeding of IEEE 

Symposium on Foundations of Computer Science. California, 

USA: IEEE press, pp. 97-106, Oct. 2011. 

[3] Qihua Wang, Hongxia Jin. "Data leakage mitigation for 

discertionary access control in collaboration clouds". the 16th 

ACM Symposium on Access Control Models and Technologies 

(SACMAT), pp.103-122, Jun. 2011. 

[4] Adam Skillen and Mohammad Mannan. On Implementing 

Deniable Storage Encryption for Mobile Devices. the 20th 

Annual Network and Distributed System Security Symposium 

(NDSS), Feb. 2013. 

[5] Wang W, Li Z, Owens R, et al. Secure and efficient access to 

outsourced data. in: Proceedings of the 2009 ACM workshop on 

Cloud computing security. Chicago, USA: ACM pp. 55-66, 2009. 

[6] Maheshwari U, Vingralek R, Shapiro W. How to build a trusted 

database system on untrusted storage. in: Proceedings of the 

4th conference on Symposium on Operating System Design & 

Implementation-Volume 4. USENIX Association, pp. 10-12, 

2000. 

[7] Kan Yang, Xiaohua Jia, Kui Ren: Attribute-based fine-grained 

access control with efficient revocation in cloud storage systems. 

ASIACCS 2013, pp. 523-528, 2013. 

[8] Crampton J, Martin K, Wild P. On key assignment for 

hierarchical access control. in: Computer Security Foundations 

Workshop. IEEE press, pp. 14-111, 2006. 

[9] Shi E, Bethencourt J, Chan T H H, et al. Multi-dimensional 

range query over encrypted data. in: Proceedings of 

Symposium on Security and Privacy (SP), IEEE press, 2007. 350-

364 

[10] Cong Wang, Kui Ren, Shucheng Yu, and Karthik Mahendra 

Raje Urs. Achieving Usable and Privacy-assured Similarity 

Search over Outsourced Cloud Data. IEEE INFOCOM 2012, 

Orlando, Florida, March 25-30, 2012 

[11] Yu S., Wang C., Ren K., Lou W. Achieving Secure, Scalable, and 

Fine-grained Data Access Control in Cloud Computing. 

INFOCOM 2010, pp. 534-542, 2010 

[12] Kan Yang, Xiaohua Jia, Kui Ren, Bo Zhang, Ruitao Xie: DAC-

MACS: Effective Data Access Control for Multiauthority Cloud 

Storage Systems. IEEE Transactions on Information Forensics 

and Security, Vol. 8, No. 11, pp.1790-1801, 2013. 

[13] Stehlé D, Steinfeld R. Faster fully homomorphic encryption. in: 

Proceedings of 16th International Conference on the Theory and 

Application of Cryptology and Information Security. Singapore: 

Springer press, pp.377-394, 2010. 

[14] Junzuo Lai, Robert H. Deng ,Yingjiu Li ,et al. Fully secure key-

policy attribute-based encryption with constant-size ciphertexts 

and fast decryption. In: Proceedings of the 9th ACM symposium 

on Information, Computer and Communications Security 

(ASIACCS), pp. 239-248, Jun. 2014. 

[15] Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-



2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

14 IEEE TRANSACTIONS ON CLOUD COMPUTING,  2014 

 

based encryption. in: Proceedings of the 2007 IEEE Symposium 

on Security and Privacy (SP). Washington, USA: IEEE 

Computer Society, pp. 321-334, 2007. 

[16] Liang Xiaohui, Cao Zhenfu, Lin Huang, et al. Attribute based 

proxy re-encryption with delegating capabilities. in: 

Proceedings of the 4th International Symposium on 

Information, Computer and Communications Security. New 

York, NY, USA: ACM press, pp. 276-286, 2009. 

[17] Pirretti M, Traynor P, McDaniel P, et al. Secure atrribute-based 

systems. in: Proceedings of the 13th ACM Conference on 

Computer and Communications Security. New York, USA: 

ACM press, pp. 99-112, 2006. 

[18] Yu S., Wang C., Ren K., et al. Attribute based data sharing with 

attribute revocation. in: Proceedings of the 5th International 

Symposium on Information, Computer and Communications 

Security (ASIACCS), New York, USA: ACM press pp. 261-270, 

2010. 

[19] Sandhu R S, Coyne E J, Feinstein H L, et al. Role-based access 

control models. Computer, 29(2): 38-47, 1996. 

[20] Tian X X, Wang X L, Zhou A Y. DSP RE-Encryption: A flexible 

mechanism for access control enforcement management in 

DaaS. in: Proceedings of IEEE International Conference on 

Cloud Computing. IEEE press, pp.25-32, 2009 

[21] Di Vimercati S D C, Foresti S, Jajodia S, et al. Over-encryption: 

management of access control evolution on outsourced data. in: 

Proceedings of the 33rd international conference on Very large 

data bases. Vienna, Austria: ACM, pp. 123-134, 2007. 

[22] Kan Yang, Xiaohua Jia, Kui Ren, Ruitao Xie, Liusheng Huang: 

Enabling efficient access control with dynamic policy updating 

for big data in the cloud. INFOCOM 2014, pp.2013-2021, 2014. 

[23] Jia W, Zhu H, Cao Z, et al. SDSM: a secure data service 

mechanism in mobile cloud computing. in: Proceedings of 30th 

IEEE International Conference on Computer Communications. 

Shanghai, China: IEEE, pp. 1060-1065, 2011. 

[24] D. Huang, X. Zhang, M. Kang, and J. Luo. Mobicloud: A secure 

mobile cloud framework for pervasive mobile computing and 

communication. in: Proceedings of 5th IEEE International 

Symposium on Service-Oriented System Engineering. Nanjing, 

China: IEEE, pp. 90-98, 2010. 

[25] Benjamin Livshits, Jaeyeon Jung. Automatic Mediation of 

Privacy-Sensitive Resource Access in Smartphone Applications. 

USENIX Security, pp.113-130, Aug. 2013. 

[26] Zhou Z, Huang D. Efficient and secure data storage operations 

for mobile cloud computing. in: Proceedings of 8th 

International Conference on Network and Service Management 

(CNSM 2012), Las Vegas, USA: IEEE, pp. 37-45, 2012. 

[27] P. K. Tysowski and M. A.Hasan. Hybrid attribute- and re-

encryption-based key management for secure and scalable 

mobile applications in clouds. IEEE Transactions on Cloud 

Computing, vol. 1, no. 2, pp. 172-186, Nov. 2013. 

[28] Boneh D, Franklin M. Identity-based encryption from the Weil 

pairing. in: Proceedings of the Advances in Cryptology. Berlin, 

Heidelberg: Springer-Verlag, pp. 213−229, 2001. 

[29] Sahai A, Waters B. Fuzzy identity based encryption. in: 

Proceedings of the Advances in Cryptology. Aarhus, Denmark: 

Springer-Verlag, pp.457-473, 2005. 

[30] Shamir A. How to share a secret. Communications of the 

ACM,1979, 22 (11): 612-613 

 

 

Ruixuan Li is a professor in the School of 
Computer Science and Technology at 
Huazhong University of Science and 
Technology. He received the B.S., M.S. and 
Ph.D. in computer science from Huazhong 
University of Science and Technology, China in 
1997, 2000 and 2004 respectively. He was a 
visiting researcher in Department of Electrical 
and Computer Engineering at University of 
Toronto from 2009 to 2010. His research 

interests include cloud computing, big data management, and 
distributed system security. He is a member of IEEE and ACM. 
 
 

Chenglin Shen is a master candidate in the 
School of Computer Science and Technology at 
Huazhong University of Science and 
Technology. She received the B.S. degree from 
School of Computer Science at Wuhan 
University in 2011. Her research interests 
include cloud computing, system security, and 
network security. 
 
 

 
Heng He is a Ph.D. candidate in the School of 
Computer Science and Technology at 
Huazhong University of Science and 
Technology, and a lecturer in the School of 
Computer Science and Technology at Wuhan 
University of Science and Technology. He 
received the B.S. degree from School of 
Computer Science at Hubei University of 
Technology in 2004 and the M.S. degree from 
School of Computer Science and Technology at 
Huazhong University of Science and 

Technology in 2007. His research interests include cloud computing, 
peer-to-peer computing, network coding and network security. 
 
 

Zhiyong Xu received the B.S. and M.S. in 
Computer Science from Huazhong University of 
Science and Technology, China in 1994 and 
1997 respectively, and Ph.D. degree in 
Computer Engineering from University of 
Cincinnati in 2003. He is currently an Associate 
Professor in the Department of Mathematics 
and Computer Science at Suffolk University. His 
research interests include cloud computing, 
peer-to-peer computing, and parallel and 

distributed systems. He is a member of IEEE.  
 
 

Cheng-Zhong Xu received the B.S. and M.S. in 
Computer Science from Nanjing University, 
China in 1986 and 1989 respectively, and Ph.D. 
degrees in Computer Engineering from the 
University of Hong Kong in 1993. He is now a 
Professor of Electrical and Computer 
Engineering at Wayne State University and the 
Director of the Cloud Computing Center in 
Shenzhen Institute of Advanced Technology, 
Chinese Academy of Science. His main 

research interests include networked computing systems, reliability, 
availability, power efficiency, and security. He is an editor of IEEE 
Trans. on Computers (TC), IEEE Trans. on Parallel and Distributed 
Systems (TPDS), IEEE Trans. on Cloud Computing (TCC) and J. of 
Parallel and Distributed Computing (JPDC). 

 

 

 

 

 


