

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

LI ET AL.: A LIGHTWEIGHT SECURE DATA SHARING SCHEME FOR MOBILE CLOUD COMPUTING 3

1 1

(0)
j

s

s j

tt
i

i

s j i i
j s

x
k h y

x x

Since nxxx ,...,, 21 is public, we can get Lagrange

coefficients in advance:

1

j

s j

t
i

s

j i i
j s

x

x x

Thus, the formula to recover the secret k can be put in a

simpler way:

1
s

t

s i

s

k y

2.2 Security Assumptions

2.2.1 Semi-trusted Server

LDSS is designed under the same assumptions proposed
in 0 that the CSP is honest but curious, which means that
the CSP will faithfully execute the operations requested
by users, but it will peek on what users have stored in the
cloud. The CSP will faithfully store users’ data, undertake
an initial access control, update data according to users’
requests. However, CSP may do malicious actions such as
collusion with users to get the data in plain text.

In LDSS, proxy encryption server and proxy
decryption server are introduced to assist users to encrypt
and decrypt data so that user-side overhead can be
minimized. In essence, proxy servers are also machines in
the cloud. Thus, we consider that they are honest but
curious just as the CSP.
2.2.2 Trusted Authority

In this paper, to make LDSS feasible in practice, a trusted
authority (TA) is introduced. It is responsible of
generating public and private keys, and distributing
attribute keys to users. With this mechanism, users can
share and access data without being aware of the
encryption and decryption operations.

We assume TA is entirely credible, and a trusted
channel exists between the TA and every user. The fact
that a trusted channel exists doesn’t mean that the data
can be shared through the trusted channel, for the data
can be in a large amount. TA is only used to transfer keys
(in a small amount) securely between users. In addition,
it’s requested that TA is online all the time because data
users may access data at any time and need TA to update
attribute keys.
2.2.3 Lazy Re-encryption

In ciphertext access control, data needs to be re-encrypted
when some users’ access privileges to the data are
revoked. However, frequent re-encryption brings heavy
computational overhead, and the accessed plaintext data
may already be stored on these data users. Therefore, this
paper adopts the lazy re-encryption method proposed in
[3]. With lazy re-encryption, when a user’s access
privilege is revoked, data is not re-encrypted until the
data owner updates the data.

In our approach, when the data owner revokes a user's

privilege, the file of the access control policy that contains
these attributes will be marked. Later, when the data
owner updates this file, it first checks the mark to see if it
has been marked as revoked. If that is the case, this file
will be re-encrypted.

3 OUR PROPOSED MECHANISM

In this section, we describe the LDSS system design. First,
we give the overview of LDSS, and then we present
LDSS-CP-ABE algorithm and system operations, which
are the base of LDSS algorithm. Finally, we describe LDSS
in details.

3.1 Overview

We propose LDSS, a framework of lightweight data-
sharing scheme in mobile cloud (see Fig. 1). It has the
following six components.

(1) Data Owner (DO): DO uploads data to the mobile
cloud and share it with friends. DO determines the access
control policies.

(2) Data User (DU): DU retrieves data from the mobile
cloud.

(3) Trust Authority (TA): TA is responsible for
generating and distributing attribute keys.

(4) Encryption Service Provider (ESP): ESP provides
data encryption operations for DO.

(5) Decryption Service Provider (DSP): DSP provides
data decryption operations for DU.

(6) Cloud Service Provider (CSP): CSP stores the data
for DO. It faithfully executes the operations requested by
DO, while it may peek over data that DO has stored in
the cloud.

As shown in Fig. 1, a DO sends data to the cloud. Since
the cloud is not credible, data has to be encrypted before
it is uploaded. The DO defines access control policy in the
form of access control tree (refer to Definition 2 in Section
3.2) on data files to assign which attributes a DU should
obtain if he wants to access a certain data file. In LDSS,
data files are all encrypted with the symmetric encryption
mechanism, and the symmetric key for data encryption is
also encrypted using attribute based encryption (ABE).
The access control policy is embedded in the ciphertext of
the symmetric key. Only a DU who obtains attribute keys
that satisfy the access control policy can decrypt the
ciphertext and retrieve the symmetric key. As the
encryption and decryption are both computationally
intensive, they introduce heavy burden for mobile users.
To relieve the overhead on the client side mobile devices,
encryption service provider (ESP) and decryption service
provider (DSP) are used. Both the encryption service
provider and the decryption service provider are also
semi-trusted. We modify the traditional CP-ABE
algorithm and design an LDSS-CP-ABE algorithm to
ensure the data privacy when outsourcing computational
tasks to ESP and DSP.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

6 IEEE TRANSACTIONS ON CLOUD COMPUTING, 2014

Similarly, for the nodes in the right subtree, let SKv-

1=grv, SKv-2=gr Xvrv, CTv-1= gSv, CTv-2=XvSv, then

DecryptLeaf(CTv, SKu’, V)=
2)CTv1,e(SKv

1)CTv2,e(SKv

 =

)SvXv,rve(g

)Svg,rvXv re(g
 = e(g, g)rSv = e(g, g)qv(0).

The specific process of step 4 is as follows.
For a non-leaf node x, assume that z is a child of x, then

Fz = DecryptLeaf(CTa, SKu’, z)= e(g, g)qz(0).

Let Sx be the set of x’s children, and the size of Sx is kx，

let
'(), { () : }x xi index x S index z z S , according to secret

sharing scheme(refer to section 2.1.3), we can get:

(0)
x

qr
g)e(g,

Sxz

(0)Δ
)

(i)
x

qr
g)(e(g,

Sxz

(0)Δ
)

(index(z))
parent(z)

qr

g)(e(g,

Sxz

(0)Δ
)

(0)
z

qr
g)(e(g,

Sxz

(0)Δ
FzFx

xS'i,

xS'i,

xS'i,

xS'i,

= e(g, g)rS.

3.3 Attribute Description Field in LDSS-CP-ABE

Attribute description field is introduced in LDSS for
dynamic user privilege management. It keeps access
control strategy secret against the cloud.

To better illustrate the attribute description field, we
have the following definitions.

Definition 4: Attribute Description Field. Attribute
description field is a string of binary bits, which describes
attribute information related to DO, DU and data files.

Definition 5: Attribute Description Bit. Attribute
description bit is every bit in Attribute description field
corresponding to an attribute.

Clearly, attribute description field is composed of
several attribute description bits. The size of attribute
description field equals to the number of elements in the
attribute set A. Each DO defines its own set of attributes.
Attribute description fields of different DOs are used to
control accesses on their own data files, thus they might
have different meanings.

There are three kinds of Attribute Description fields,
namely, the Attribute Description field of DO, the
attribute description field of DU and the attribute
description field of data file.

The attribute description field of DO is generated by
the TA. When a data owner registered with TA, it sends
its own attribute set to TA. TA then generates attribute
description field, in which each attribute bit represents a
value in G0. TA keeps the attribute description field in the
DO-PK/MK-information table. The attribute description
field of DO is shown in Fig. 4.

The attribute description field of a data user (DU) is
generated by TA and the cloud under the supervision of
the data owner. TA and the cloud keep it in contacts-
information table. TA and the cloud keep up-to-date
information of DU’s attribute description fields according
to the data owner. Each data user also maintains an
attribute description field which may contains out-dated
control information. Data users obtain their attribute
description fields from TA when TA generates attribute
keys for them. The attribute description field is sent
together with the attribute keys. In the attribute
description field of DU, every bit is either 1 or 0. A 1
denotes that the DU owns the attribute while a 0 denotes
the opposite. For example, if the data owner has 5
attributes, a sample attribute description field is shown in
Fig. 5.

The attribute description field of data files is stored on
DO. It represents which attributes are assigned in data
files’ access control policy. If an attribute is included in the
access control policy, the corresponding bit in the
description field is 1, otherwise it’s 0. ‘#’ may appear in
the attribute description field when an attribute is
included in the access control policy and some data users
have this attribute revoked. For a data owner who has
five attributes, an example of the attribute description
field of data files is shown in Fig. 6.

Assume the data owner’s attribute set is {A, B, C, D, E},
and it has a file of which the access control policy is “A

A1 A2 … An

X1 X2 … Xn

Attribute Set A

Attribute

Description

Field

Attribute

Description

Bit

The mapping of attribute

to element in G0 group

Fig. 4. The attribute description field of data owner.

1 0 1 1 0 K1 K2 K3SK of DU
Attribute

Description

Field

Attribute

Keys

1 0 # 1 1

The attribute

description field

stored in data files

Revoked

attribute

Fig. 6. The attribute description field of data files.

1 0 1 1 0

1 0 1 1 0 K1 K2 K3

The attribute

description field

stored on TA and

the Cloud

SK of DU
Attribute

Description

Field

Attribute

Keys

Fig. 5. A sample attribute description field of data user.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

LI ET AL.: A LIGHTWEIGHT SECURE DATA SHARING SCHEME FOR MOBILE CLOUD COMPUTING 7

and C and D and E”. A contact of the data owner has
three attributes: {A, C, D} and C is revoked. Then the
description field of this data file is shown in Fig. 6.

To enforce access control, the access control policy
should be uploaded to the cloud. It is also described by
multiple attribute description bits, which is a combination
of 1 and 0. Thus, it can protect the access control policy
against the cloud.

3.4 System Operations of LDSS

LDSS scheme is designed for data sharing in mobile cloud.
The whole process of LDSS includes system initialization,
file sharing, user authorization, and file access operations.
It also has to support attribute revocation and file update
operations.
3.4.1 System Initialization

In system initialization, Function 1 is executed. The
specific process is described as follows.

(1) When the data owner (DO) registers on TA, TA runs

the algorithm Setup() to generate a public key PK and a

master key MK. PK is sent to DO while MK is kept on TA

itself.
(2) DO defines its own attribute set and assigns

attributes to its contacts. All these information will be sent
to TA and the cloud.

(3) TA and the cloud receive the information and store
it.
3.4.2 File Sharing

The process of file sharing uses Function 3 to encrypt data
files. The specific process is described as follows.

(1) DO selects a file M which is to be uploaded and
encrypts it using a symmetric cryptographic mechanism
(such as AES, 3DES algorithm) with a symmetric key K,
generating ciphertext C.

(2) DO assigns access control policy for M and encrypts
K with the assistance of ESP using Function 3, generating
the ciphertext of K (CT).

(3) DO uploads C, CT and access control policy to the
cloud.
3.4.3 User Authorization
The process of user authorization executes Function 2 to
generate attribute keys for data users. The specific process
is described as follows.

(1) DU logins onto the system and sends, an
authorization request to TA. The authorization request
includes attribute keys (SK) which DU already has.

(2) TA accepts the authorization request and checks
whether DU has logged on before. If the user hasn’t
logged on before, go to step (3) , otherwise go to step (4).

(3) TA calls Function 2 to generate attribute keys (SK)
for DU.

(4) TA compares the attribute description field in the
attribute key with the attribute description field stored in
database. If they are not match, go to step (5), otherwise
go to step (6).

(5) For each inconsistent bit in description field, if it is 1
on data user’s side and 0 on TA’s side, it indicates that
DU’s attribute has been revoked, then TA does nothing on
this bit. If it is reversed scenario, it indicates that DU has
been assigned with a new attribute, then TA generates the

corresponding attribute key for DU.
(6) TA checks the version of every attribute key of DU.

If it’s not the same with the current version, then TA
updates the corresponding attribute key for DU.

In the stage of user authorization, TA updates attribute
keys for DU according to the attribute description field,
which is stored with SK. It describes which attributes DU
has and their corresponding versions. TA also keeps
attribute description field of DU in database. When DO
changes the attribute of DU, the attribute description field
on the TA side is also updated. Thus, when DU logins on
the system, the attribute description field on itself may be
different from that of TA. TA has to update the attribute
keys for DU according to the attribute description field
just as described above.
3.4.4 Access Files

When DU requests to access a certain data file, Function 4
is used to decrypt data. The specific process is described
as follows:

(1) DU sends a request for data to the cloud.
(2) Cloud receives the request and checks if the DU

meets the access requirement. If DU can’t meet the
requirement, it refuses the request, otherwise it sends the
ciphertext to DU.

(3) DU receives the ciphertext, which includes
ciphertext of data files and ciphertext of the symmetric
key. Then DU executes the Function 4 to decrypt the
ciphertext of the symmetric key with the assistance of DSP.

(4) DU uses the symmetric key to decrypt the
ciphertext of data files.
3.4.5 Privilege Revoked

DO can revoke attributes from a DU. The process is as
follows.

(1) DO informs TA and the cloud that one attribute has
been revoked from a specific DU.

(2) TA and the cloud update the information of DU in
database.

(3) DO marks the corresponding bit of the attribute
description field of data files.

This strategy implements the asynchronous processing
of attribute revocation and attribute keys update
operations. When DO wants to revoke one attribute from
a DU, TA only updates the database and doesn’t update
attribute keys for DU simultaneously.
3.4.6 Documentation Updates

As a result of lazy re-encryption, when DO revokes
one attribute from a DU, the revoked attribute is not
updated. When the data file is updated, if it has one
attribute that has been revoked, this attribute should be
updated. The specific process is as follows.

(1) DO checks if there is any bit in the description field
of data files has been set to ‘#’.

(2) DO informs TA which attributes should be updated.
All the attributes that should be updated form a set is
called Anew.

(3) TA chooses a new value in G0 for every attribute in
Anew to replace the original one, and updates the
description field of DO in DO-PK/MK table, changing the
corresponding attribute description bit to the new value.

(4) TA sends a new PK to DO, and DO uses the new PK

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

8 IEEE TRANSACTIONS ON CLOUD COMPUTING, 2014

to encrypt data files.
(5) DO sets the ‘#’ bit of the description field of the

corresponding data file to 1.
This operation is critical for lazy re-encryption. If the

system updates attributes immediately after the attribute
revocation operation, excessive overhead occurs. Taking
into account that DU already know the content of a data
file after accessing it, there is no need to re-encrypt this
data file with a new symmetric key immediately. The DU
who has been revoked the access privileges should not be
able to access the updated content. In this situation, the
system should re-encrypt the data file. Thus, in LDSS,
attribute updates are delayed until related data files are
updated. In order to decide which attribute should be
updated, the corresponding bit in the description field
has to be marked as ‘#’.

4 SECURITY ANALYSIS

The security assessment is based on the security
assumptions we described in Section 3. The possible
scenarios that malicious users may expose plaintext to
others are not discussed.

4.1 Security Analysis of LDSS-CP-ABE

LDSS-CP-ABE algorithm is designed on top of Attribute-
Based Encryption (ABE). The security of ABE is based on
the bilinear diffie-hellman assumptions.

Bilineardiffie-hellman assumptions: When attackers

only have a, b, c, z Zp, there exists no polynomial

algorithm that can get the relationship between (A=ga,

B=gb, C=gc, Z=e(g, g)ab/c) and (A=ga, B=gb, C=gc, Z=e(g, g)z).

In other words, attackers cannot get Z=e(g, g)z that

corresponds to e(g, g)ab/c.
The security of CP-ABE is proved in BSW CP-ABE [27]

based on above assumptions. Since LDSS-CP-ABE is a
variation of the original BSW CP-ABE, the structure of the
ciphertext used in LDSS-CP-ABE is similar to that of
original BSW CP-ABE, thus the encryption and
decryption processes are safe. The difference between our
work and BSW CP-ABE is that a version attribute is
added to the access control tree. It only changes the
structure of the access tree slightly. It contains two sub
trees in our work: Ta and Tv. If a DO chooses a first-order
polynomial q (x), and let S = q(0), S1 = q (1), S2 = q (2). The
tuple {S1, Ta} is sent to ESP. According to the secret
sharing scheme, even if S1 is exposed to DO, S2 and S are
safe.

4.2 Data Confidentiality against Conspiracy

The data confidentiality is taken into account from two
aspects. In LDSS, data are encrypted with a symmetric
key. The security of this part is guaranteed by symmetric
encryption mechanism. Next, the symmetric key is
encrypted by attribute encryption. The security of this
part depends on the encryption process.

The security of the core algorithm in the encryption
process is proved in the previous section. Here, we

discuss the situation that the symmetric key is safe even if
a malicious user, ESP and DSP conspired to get the key.
The conspiracy attack can be divided into several kinds,
namely conspiracy between different users, DSP and ESP,
users and cloud.

First, consider the conspiracy between different users.
It can be proven that different users with different
attributes cannot combine their attributes to decrypt data
files. Since users get different r from TA, which is used to
generate attribute keys for users, different users with
same attributes get different keys. When decrypting data
files, only when all the keys are generated from the same
r can they be combined to decrypt data files, thus
effectively preventing the conspiracy between users.

Second, consider the conspiracy between ESP and DSP.
ESP gets {S1 , Ta} and PK from DO and TA, and DSP gets
SKu’, CT from DU. Combining all these information, ESP
and DSP can finally get Sratgge /)(),(, rSgge),(, agge),(,
which cannot deduce aSgge),(thanks to the bilinear
diffie-hellman assumptions, thus protecting CTk.

Last, consider the conspiracy between the cloud and
DU. The cloud may send data packets to whom do not
meet the access control policy. However, even if DU
illegally obtains ciphertext, it cannot get the plain context
since it doesn’t have the right attribute keys.

4.3 Confidentiality of Access Control Policy

The security of access control policy is that no
participants could know the specific content of the access
control policy except data owners. LDSS introduces
attribute description field so that access control policy is
described by the corresponding attribute description bit.
ESP and the Cloud can only get the relationships between
different attribute description bits, but not the specific
content of access control strategy, thus protecting the
access control strategy.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of LDSS in
terms of computational and storage overheads,
respectively.

5.1 Experimental Settings

To evaluate the efficiency of the proposed solution, we
conduct several experiments. The test of LDSS is done on
a Core 2 DUO machine, which has 2.0GHz CPU with the
Linux operating system (Ubuntu 12.10) installed.

The core algorithm of LDSS takes advantage of the CP-

ABE tools developed by Bethencourt et al [15]. It’s based

on 160-bit elliptic curve group, which derives from the

super singular curve xxy 32

 over a 512-bit finite field.

CP-ABE tools have three basic operations, namely

exponentiation and pairing on G0 and exponentiation on

G1. These three operations take 4.99ms, 4.98ms and

0.58ms respectively in our experimental environment.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

LI ET AL.: A LIGHTWEIGHT SECURE DATA SHARING SCHEME FOR MOBILE CLOUD COMPUTING 9

The cost of access control mechanisms is closely related
to the size of access control policy. To reflect closely to the
reality, in our experiment, the number of attributes owned
by individual users is fixed, and the size of access control
policy varies. We assume that the average number of
attributes owned by DO is 10, and the number of
attributes included in the access policies varies from 1 to
32.

In order to simplify the representation, we define the
following symbols:

|A|: The number of attributes owned by DO.
|Au| : The number of attributes owned by DU.
|Ta|: The number of leaf nodes in the access control

tree .
|T|: The number of leaf nodes in the access control

tree with version attribute, and |T| = |Ta| +1.
LG0, LG1, Lz: The size of an element in G0 group, G1

group and Z.
T_G0: The time needed for exponentiation operation in

group G0.
T_Gm: The time needed for multiplication operation in

group Gm.
T_Ge: The time needed for pairing operation in group

G0.
T_G1: The time needed for exponentiation operation in

group G1.

5.2 Computational Overhead Evaluation

We first evaluate the computational overhead of LDSS
and compare it with existing access control schemes.
5.2.1 Computational Overhead of LDSS

According to [26], the basic operations of attribute based
encryption mechanisms (pairing, exponentiation,
multiplication) vary a lot between mobile devices and
PCs. The experimental results are shown in Table 1.

It is clear that a single pairing operation,
exponentiation operation, multiplication operation take
much longer time on mobile devices than on PCs, which
is 27, 35 and 38 times of that on PCs. We focus the
analysis of computational overhead on pairing operation
and exponentiation operation. Other operations that take
little time are ignored.

(1) User registration
The overhead of user registration comes from the

function Setup(), which only needs to be executed once
and the overhead is on the TA’s side. The main overhead
of this execution includes one exponentiation operation
and one pairing operation on G0 and one exponentiation

operation on G1, namely. The main overhead is: T_G0 +
T_Ge + T_G1.

(2) Data sharing
The cost of data sharing comes from the execution of

the function Encryption(), which is executed every time
when sharing data files. The function Encryption()
includes exponentiation operation on G0 (the number of
operations is proportional to the number of attributes
included in the access strategy) and one exponentiation
operation on G1. The cost of this function depends on
which one does the encryption operation. Before
introducing ESP, the cost is on DO. After the usage of ESP,
the cost on DO is reduced to a constant value, and is no
longer associated with the number of attributes in access
control strategies. The overhead on ESP and DO is shown
in Table 2.

(3) User authorization
The cost of user authorization comes from function

KeyGen(), which is executed the first time a DU tries to
read a DO’s data. TA executes this function for
authorization. It includes exponentiation on G0 and
multiplication on G0, of which the number is proportional
to the number of attributes owned by DU . The overhead
is: (2 |Au| +1) T_G0 + |Au| T_Gm.

(4) Accessing data files
The cost of accessing data files comes from function

Decryption(), which is executed every time a file is
accessed. This function includes pairing operations on G0,
multiplication operations on G0 and exponentiation
operation on G1. The number of these three kinds of
operations is all proportional to the number of attributes
included in the access strategy. The cost of accessing data
files depends on which one does the decryption operation.
Before introducing DSP, the overhead is on DU. After the
introduction of DSP, the cost on DU is reduced to a
constant value. The overhead of decryption is related to
the number of attributes involved in the data file and how
these attributes are combined. In the worst case, all the
attributes keys related to the access control strategy are
needed for decryption. In this case, the overhead of ESP
and DO is shown in Table 3.

 TABLE 1
COMPUTATIONAL OVERHEAD OF BASIC OPERATIONS OF ABE

SCHEMES

Types of

Devices
Pairing Exponentiation Multiplication

PC 20 ms 5 ms 0.7 ms

Mobile 550 ms 177 ms 26 ms

TABLE 2
COMPUTATIONAL OVERHEAD OF DATA SHARING

Exponentiation

on G0

Exponentiation

on G1
Paring on G0

ESP 2|Ta| 0 0

DO 3 1 0

TABLE 3
COMPUTATIONAL OVERHEAD OF DATA ACCESS

Exponentiation

on G0

Exponentiation

on G1
Paring on G0

DSP 0 |Ta| 2|Ta|+1

DO 0 1 0

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

10 IEEE TRANSACTIONS ON CLOUD COMPUTING, 2014

(5) User revocation
LDSS uses lazy re-encryption. If there is user

revocation operation, TA and the cloud only need to
update the contact-attribute-information table. Only
when data files are updated should the attributed be
updated and data files be re-encrypted. As a result,
multiple revocation operations are merged into one,
reducing the overall overhead. The cost of data re-
encryption is the same with sharing data files. Thus, no
further discussion is placed here.
5.2.2 Computational Overhead with Different CP-ABE

Schemes

DO’s overhead in different ABE schemes is shown in
Table 4. As shown in Table 4, in existing programs, the
overhead on mobile user DU’s side is proportional to the
number of attributes in access control policy. In LDSS, the
overhead is a small constant value.
5.2.3 Measurement of Computational Overhead of

LDSS

We measure the computational overhead of LDSS
through experiments. The results are as follows.

(1) Registration cost
The average registration time for a single user is 50ms.
(2) Authorization cost
The time needed for authorization is proportional to

the number of attributes owned by DU. Fig. 7 shows the
time needed for user authorization when the number of
attributes owned by user is 2,4,8,16,32.

As can be seen in Fig. 7, the time of authorization is
proportional to the number of attributes in both BSW CP-
ABE [27] and LDSS.

In both scenarios, the authorization time is still lower
than 1s when the number of attributes rises to 32.
Authorization time in LDSS is just slightly longer because
it introduces the version attribute.

(3) The cost of encryption and decryption

The time needed for encryption and decryption is
shown in Fig. 8.

As can be seen from Fig. 8, the overhead of encryption
and decryption operations is proportional to the number
of attributes in access control policy. In LDSS, it takes a
little longer. Besides, the encryption and decryption time
are lower than 1s when the number of attributes rises to
32 in both schemes.

Fig. 9 shows how the overhead on user side in BSW
CP-ABE and LDSS changes with the size of access control
policy. In LDSS, since the main encryption and decryption
operations are given to the proxy server, the overhead on
users’ side is basically a constant value, on longer
changing with the size of access control policy.

(4) The overhead of user revocation

Fig. 7. The computational overhead of authorization.

Fig. 9. The relationship between users’ overhead and the size of
access control policy.

Fig. 10. The overhead of attribute revocation.

TABLE 4
COMPUTATIONAL OVERHEAD WITH DIFFERENT CP-ABES

 Bethencourt BSW CP-ABE LDSS

Data

sharing

(2|Ta|+1)T_

G0+T_G1

(4|Ta|+1)T_

G0+T_G1
3T_G0+T_Gm

Data

access
(2|Au|+1)T_Ge (2|Au|+1)T_Ge T_G0+T_Gm

Fig. 8. The relationship between encryption and decryption time and
the size of access control policy.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

LI ET AL.: A LIGHTWEIGHT SECURE DATA SHARING SCHEME FOR MOBILE CLOUD COMPUTING 11

From the above analysis, the main overhead of user
revocation comes from user attribute update operations.
The overhead is related to the number of revoked
attributes and related users. Assume that there are 32
attributes in the attribute set, and the average number of
attributes owned by DU is 10. Fig. 10 shows how the
overhead of user revocation changes with the number of
data users when the number of revoked attributes is 2
and 4, respectively.

As shown in Fig. 10, the overhead of user revocation is
proportional to the number of data users, and LDSS
works better than other CP-ABE. When the number of
revoked attributes grows bigger, this advantage becomes
more obvious.

In a word, the experimental results show that LDSS
reduces the overhead on users’ side significantly at a
small cost of the overall growth on storage and
computation. It also performs better in user revocation
operations.

5.3 Storage Overhead Evaluation

We also evaluate the storage overhead of LDSS and
compare it with existing CP-ABE schemes.
5.3.1 Storage Overhead with Different CP-ABE

Schemes

DO needs to keep PK, which is of the size (|A|+3)LG0+ LG1.
DU also needs to keep SK, which is of the size (|Au|+4)
LG0. TA needs to keep PK and MK. MK is of the size LG0.
The cloud needs to keep the symmetric key ciphertext CT,
which is of the size (2|Ta|+3) LG0+ LG1. DSP / ESP only do
calculations and need not retain any value.

Table 5 shows the comparison of storage overhead
with different CP-ABE schemes.
5.3.2 Measurement of Storage Overhead of LDSS

LDSS is based on 160-bit elliptic curve group, which is
derived from the super singular curve xxy 32 over a
512-bit finite field. The size of LG0、LG1、Lz is 40B, 64B
and 20B, separately.

In LDSS, the storage overhead needed for access
control is the storage of PK/MK, SK and CT. PK and MK
is 156B and 888B separately. The size of CT grows with
the number of attributes in access control policy and the
size of SK grows with the number of attributes in DU’s
attribute set.

When sharing data files, the data files is encrypted
with symmetric key, then the symmetric key itself is
encrypted by CP-ABE. Since the size of data files remains
the same after encryption, we only evaluate the size

change of the symmetric key.
Fig. 11 shows the size of symmetric key after

encryption when the number of attributes in access
control policy is 1, 2, 4, 8, 16 and 32. It can be concluded
that the size of ciphertext rises with the number of
attributes in access control policy in both BSW CP-ABE
[15] and LDSS. The size of symmetric key ciphertext of
BSW CP-ABE is a little bigger than that of LDSS. When
the number of attributes rises to 32, the size of symmetric
key ciphertext is smaller than 10KB in both schemes,
which is very small compared to the data files.

For DU authorization, the size of SK is linear with the
number of attributes in DU’s attribute set. Fig. 12 shows
the size of SK when the number of attributes in DU’s
attribute set is 2, 4, 8 and 32, respectively.

When the number of attributes in the attribute set rises
to 32, DU’s SK is smaller than 1KB in both schemes, which
is very small compared to the size of data files. The size of
SK in LDSS is a little bigger for introducing an attribute
version, but the difference is small.

In sum, in LDSS, the storage overhead needed for
access control is very small compared to data files.

5.4 Communication Overhead Evaluation

The communication overhead of access control happens
when TA sends keys to DO/DU at the stage of system
initialization and user authorization, and DO/DU
encrypt/decrypt the symmetric key which is used to
encrypt the data files. According to the experimental

TABLE 5
STORAGE OVERHEAD WITH DIFFERENT CP-ABES

CP-ABEs PK MK SK CT

BSW[27] 3 LG0+ LG1 Lz+ LG0 (2|Au|+1)

LG0

(2|Ta|+1)

LG0+ LG1

Waters[30] (|A|+2)

LG0+ LG1

LG0 (|Au|+2)

LG0

(2|Ta|+1)

LG0+ LG1

LDSS 3 LG0+ LG1 LG0 (|Au|+4)

LG0

(2|Ta|+3)

LG0+ LG1

Fig. 12. The storage overhead of SK.

Fig. 11. The relationship between symmetric key ciphertext and
access control policy.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

12 IEEE TRANSACTIONS ON CLOUD COMPUTING, 2014

results of Section 5.3, the key sent to TA is the MK of size
888B. The keys sent to DU are the attribute keys which are
8969B when the number of attributes owned by DU rises
to 32. According to function 3 and 4, intermediate results
of encryption/decryption transferred between DO/DU
and ESP/DSP are of the size smaller than CT, which is
lower than 10000B. Since the transferred data are in small
amount, the communication cost is negligible.

6 RELATED WORKS

In this section, we focus on the works of ciphertext access
control schemes which are closely related to our research.

Access control is an important mechanism of data
privacy protection to ensure that data can only be
acquired by legitimate users. There has been substantial
research on the issues of data access control in the cloud,
mostly focusing on access control over ciphertext.
Typically, the cloud is considered honest and curious.
Sensitive data has to be encrypted before sending to the
cloud.

User authorization is achieved through key
distribution. The research can be generally divided into
four areas: simple ciphertext access control, hierarchical
access control, access control based on fully
homomorphic encryption [1][2] and access control based
on attribute-based encryption (ABE).

Simple ciphertext access control refers to that after data
file encryption, the encryption keys are distributed in a
secure way to achieve authorization for trusted users [3].
To reduce the overhead of massive user key distribution,
Skillen and Mannan [4] designed a system called
Mobiflage that enables PDE (plausibly deniable
encryption) on mobile devices by hiding encrypted
volumes via random data on a device’s external storage.
However, the system needs to obtain large amount of
information of keys. [5] borrows the access control
method used in conventional distributed storage
[4][6][12][14], separating users into different groups
according to access rights and assign different keys to
groups. This reduces the overhead of key management,
but it cannot satisfy the demand for fine-grained access
control.

Hierarchical access control has good performance in
reducing the overhead of key distribution in ciphertext
access control [7]. As a result, there are substantial
research on ciphertext access control [8][9][10][11] based
on hierarchical access control method. In hierarchical
access control method, keys can be derived from private
keys and a public token table. However, the operation on
token table is complicated and generates high cost.
Besides, the token table is stored in the cloud. Its privacy
and security cannot be guaranteed [12].

Full homomorphic encryption algorithm can operate
directly on the ciphertext. Its operating results are the
same with operating on plaintext and then encrypting the
data. [13] uses full homomorphic encryption algorithm to
do operations such as retrieval and calculation directly on
ciphertext. It can solve the problem that the cloud is
untrustworthy fundamentally because all data update

operations and user privilege change operations can be
done directly on ciphertext. However, this encryption
scheme is too complex to implement in practical
applications.

Attribute-based encryption algorithm is derived from
identity-based encryption. It embeds decryption rules in
the encryption algorithm, which avoids frequent key
distribution. Lai et al [14] and Bethencourt et al [15]
proposed key-policy attribute-based encryption (KP-ABE)
and ciphertext-policy attribute-based encryption (CP-
ABE). In practical applications, CP-ABE has been
extensively studied [16][17][18] since it is similar to role-
based access control (RBAC) scheme [19]. In CP-ABE, the
possession of one attribute key means that the key owner
owns corresponding attribute, and attribute keys cannot
be reclaimed once they are distributed. As a result, when
a data user’s attribute is revoked, how to ensure data
privacy becomes a difficult issue [14]. Liang et al [16]
propose attribute-based proxy re-encryption (ABPRE)
scheme to solve this problem. However, in their solution,
when a user’s attribute is revoked, all other users who
own this attribute will lose this attribute at the same time,
which cannot satisfy fine-grained access control needs.
Tian et al [20] combine CP-ABE and public key
cryptography to achieve ciphertext access control.
However, it brings high cost to data owners. Di Vimercati
et al [21] add a time stamp to attributes to limit the use of
attribute keys to deal with attribute revocation problem.
However, in this scenario, data users need to periodically
apply for attribute keys and the users’ attribute cannot be
revoked before the time stamp expires. Yu et al [22]
propose some work of revocation can be outsourced to
CSP, whereas CSP should have a certain credibility, and
access control policy that contains “or” relationship or
“threshold” relationship is not supported. Yu et al [23]
also proposed a scheme to address the cloud computing
challenging that keep sensitive user data confidential
against untrusted servers by exploiting and uniquely
combining techniques of attribute-based encryption
(ABE), proxy re-encryption, and lazy re-encryption. Yang
et al. [22] proposed a novel scheme that enabling efficient
access control with dynamic policy updating for big data
in the cloud that focusing on developing an outsourced
policy updating method for ABE systems. It also
designed policy updating algorithms for different types
of access policies.

All the above works focus on the issue of data access
control in the cloud. They are mainly for non-mobile
devices and cannot be applied for data sharing in mobile
cloud environment. Regarding to data privacy in mobile
cloud, some works have been done in this field [23].
Huang et al [24] propose MobiCloud, in which traditional
Mobile Ad-hoc NETworks (MANETs) is transformed into
service-oriented communication architecture. In this
architecture, each mobile device is regarded as a service
node, and the operations are outsourced to the cloud.
However, in MobiCloud, users need to completely trust
the cloud, which is not the case in reality. Livshits and
Jung [25] designed and implemented a graph theoretic
algorithm to place mediation prompts that protect every

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

LI ET AL.: A LIGHTWEIGHT SECURE DATA SHARING SCHEME FOR MOBILE CLOUD COMPUTING 13

resource access, while avoiding repetitive prompting and
prompting in background tasks or third-party libraries,
for the problem of mediating resource accesses in mobile
applications. Zhou et al [26] proposed an ABDS scheme to
achieve secure data storage in the cloud. However, this
scheme is not suitable for data sharing and has no clear
solution for attribute revocation. Tysowski et al. [27]
considered a specific cloud computing environment
where data are accessed by resource-constrained mobile
devices, and proposed novel modifications to ABE, which
assigned the higher computational overhead of
cryptographic operations to the cloud provider and
lowered the total communication cost for the mobile user.

In summary, current proposals on data access control
in the cloud are mostly for non-mobile terminals, which is
not suitable for mobile devices. Besides, current solutions
don’t solve the problem of user privilege change scenarios
very well since they bring high revocation cost. This is not
applicable for mobile devices which only have limited
computing capacity and power. Existing studies on
mobile cloud don’t have a good solution to secure data
sharing when servers are not credible. In a word, there is
no proper solution that can solve the problem of secure
data sharing in mobile cloud. In this paper, we propose a
lightweight data sharing scheme (LDSS) for mobile cloud
applications. It adopts CP-ABE, a technology used in
access control in the normal cloud environment, but
changes the structure of access control tree to make it
suitable for mobile cloud. LDSS is provably secure, and is
demonstrated to be more efficient and scalable than state-
of-the-art ABE schemes.

7 CONCLUSION AND FUTURE WORK

In recent years, many studies on access control in cloud
are based on attribute-based encryption algorithm (ABE).
However, traditional ABE is not suitable for mobile cloud
because it is computationally intensive and mobile
devices only have limited resources. In this paper, we
propose LDSS to address this issue. It introduces a novel
LDSS-CP-ABE algorithm to migrate major computation
overhead from mobile devices onto proxy servers, thus it
can solve the secure data sharing problem in mobile cloud.
The experimental results show that LDSS can ensure data
privacy in mobile cloud and reduce the overhead on
users’ side in mobile cloud. In the future work, we will
design new approaches to ensure data integrity. To
further tap the potential of mobile cloud, we will also
study how to do ciphertext retrieval over existing data
sharing schemes.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China under grants 61173170, 61300222,
61370230, 61433006 and U1401258, Innovation Fund of
Huazhong University of Science and Technology under
grants 2015TS069 and 2015TS071, Science and Technology
Support Program of Hubei Province under grant
2014BCH270 and 2015AAA013, Science and Technology

Program of Guangdong Province under grant
2014B010111007, and and Youth Talent Project of Science
and Technology Research Program of Hubei Provincial
Education Department under grant Q20151111.

REFERENCES

[1] Gentry C, Halevi S. Implementing gentry’s fully-homomorphic

encryption scheme. in: Advances in Cryptology–EUROCRYPT

2011. Berlin, Heidelberg: Springer press, pp. 129-148, 2011.

[2] Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic

encryption from (standard) LWE. in: Proceeding of IEEE

Symposium on Foundations of Computer Science. California,

USA: IEEE press, pp. 97-106, Oct. 2011.

[3] Qihua Wang, Hongxia Jin. "Data leakage mitigation for

discertionary access control in collaboration clouds". the 16th

ACM Symposium on Access Control Models and Technologies

(SACMAT), pp.103-122, Jun. 2011.

[4] Adam Skillen and Mohammad Mannan. On Implementing

Deniable Storage Encryption for Mobile Devices. the 20th

Annual Network and Distributed System Security Symposium

(NDSS), Feb. 2013.

[5] Wang W, Li Z, Owens R, et al. Secure and efficient access to

outsourced data. in: Proceedings of the 2009 ACM workshop on

Cloud computing security. Chicago, USA: ACM pp. 55-66, 2009.

[6] Maheshwari U, Vingralek R, Shapiro W. How to build a trusted

database system on untrusted storage. in: Proceedings of the

4th conference on Symposium on Operating System Design &

Implementation-Volume 4. USENIX Association, pp. 10-12,

2000.

[7] Kan Yang, Xiaohua Jia, Kui Ren: Attribute-based fine-grained

access control with efficient revocation in cloud storage systems.

ASIACCS 2013, pp. 523-528, 2013.

[8] Crampton J, Martin K, Wild P. On key assignment for

hierarchical access control. in: Computer Security Foundations

Workshop. IEEE press, pp. 14-111, 2006.

[9] Shi E, Bethencourt J, Chan T H H, et al. Multi-dimensional

range query over encrypted data. in: Proceedings of

Symposium on Security and Privacy (SP), IEEE press, 2007. 350-

364

[10] Cong Wang, Kui Ren, Shucheng Yu, and Karthik Mahendra

Raje Urs. Achieving Usable and Privacy-assured Similarity

Search over Outsourced Cloud Data. IEEE INFOCOM 2012,

Orlando, Florida, March 25-30, 2012

[11] Yu S., Wang C., Ren K., Lou W. Achieving Secure, Scalable, and

Fine-grained Data Access Control in Cloud Computing.

INFOCOM 2010, pp. 534-542, 2010

[12] Kan Yang, Xiaohua Jia, Kui Ren, Bo Zhang, Ruitao Xie: DAC-

MACS: Effective Data Access Control for Multiauthority Cloud

Storage Systems. IEEE Transactions on Information Forensics

and Security, Vol. 8, No. 11, pp.1790-1801, 2013.

[13] Stehlé D, Steinfeld R. Faster fully homomorphic encryption. in:

Proceedings of 16th International Conference on the Theory and

Application of Cryptology and Information Security. Singapore:

Springer press, pp.377-394, 2010.

[14] Junzuo Lai, Robert H. Deng ,Yingjiu Li ,et al. Fully secure key-

policy attribute-based encryption with constant-size ciphertexts

and fast decryption. In: Proceedings of the 9th ACM symposium

on Information, Computer and Communications Security

(ASIACCS), pp. 239-248, Jun. 2014.

[15] Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2649685,
IEEE Transactions on Cloud Computing

14 IEEE TRANSACTIONS ON CLOUD COMPUTING, 2014

based encryption. in: Proceedings of the 2007 IEEE Symposium

on Security and Privacy (SP). Washington, USA: IEEE

Computer Society, pp. 321-334, 2007.

[16] Liang Xiaohui, Cao Zhenfu, Lin Huang, et al. Attribute based

proxy re-encryption with delegating capabilities. in:

Proceedings of the 4th International Symposium on

Information, Computer and Communications Security. New

York, NY, USA: ACM press, pp. 276-286, 2009.

[17] Pirretti M, Traynor P, McDaniel P, et al. Secure atrribute-based

systems. in: Proceedings of the 13th ACM Conference on

Computer and Communications Security. New York, USA:

ACM press, pp. 99-112, 2006.

[18] Yu S., Wang C., Ren K., et al. Attribute based data sharing with

attribute revocation. in: Proceedings of the 5th International

Symposium on Information, Computer and Communications

Security (ASIACCS), New York, USA: ACM press pp. 261-270,

2010.

[19] Sandhu R S, Coyne E J, Feinstein H L, et al. Role-based access

control models. Computer, 29(2): 38-47, 1996.

[20] Tian X X, Wang X L, Zhou A Y. DSP RE-Encryption: A flexible

mechanism for access control enforcement management in

DaaS. in: Proceedings of IEEE International Conference on

Cloud Computing. IEEE press, pp.25-32, 2009

[21] Di Vimercati S D C, Foresti S, Jajodia S, et al. Over-encryption:

management of access control evolution on outsourced data. in:

Proceedings of the 33rd international conference on Very large

data bases. Vienna, Austria: ACM, pp. 123-134, 2007.

[22] Kan Yang, Xiaohua Jia, Kui Ren, Ruitao Xie, Liusheng Huang:

Enabling efficient access control with dynamic policy updating

for big data in the cloud. INFOCOM 2014, pp.2013-2021, 2014.

[23] Jia W, Zhu H, Cao Z, et al. SDSM: a secure data service

mechanism in mobile cloud computing. in: Proceedings of 30th

IEEE International Conference on Computer Communications.

Shanghai, China: IEEE, pp. 1060-1065, 2011.

[24] D. Huang, X. Zhang, M. Kang, and J. Luo. Mobicloud: A secure

mobile cloud framework for pervasive mobile computing and

communication. in: Proceedings of 5th IEEE International

Symposium on Service-Oriented System Engineering. Nanjing,

China: IEEE, pp. 90-98, 2010.

[25] Benjamin Livshits, Jaeyeon Jung. Automatic Mediation of

Privacy-Sensitive Resource Access in Smartphone Applications.

USENIX Security, pp.113-130, Aug. 2013.

[26] Zhou Z, Huang D. Efficient and secure data storage operations

for mobile cloud computing. in: Proceedings of 8th

International Conference on Network and Service Management

(CNSM 2012), Las Vegas, USA: IEEE, pp. 37-45, 2012.

[27] P. K. Tysowski and M. A.Hasan. Hybrid attribute- and re-

encryption-based key management for secure and scalable

mobile applications in clouds. IEEE Transactions on Cloud

Computing, vol. 1, no. 2, pp. 172-186, Nov. 2013.

[28] Boneh D, Franklin M. Identity-based encryption from the Weil

pairing. in: Proceedings of the Advances in Cryptology. Berlin,

Heidelberg: Springer-Verlag, pp. 213−229, 2001.

[29] Sahai A, Waters B. Fuzzy identity based encryption. in:

Proceedings of the Advances in Cryptology. Aarhus, Denmark:

Springer-Verlag, pp.457-473, 2005.

[30] Shamir A. How to share a secret. Communications of the

ACM,1979, 22 (11): 612-613

Ruixuan Li is a professor in the School of
Computer Science and Technology at
Huazhong University of Science and
Technology. He received the B.S., M.S. and
Ph.D. in computer science from Huazhong
University of Science and Technology, China in
1997, 2000 and 2004 respectively. He was a
visiting researcher in Department of Electrical
and Computer Engineering at University of
Toronto from 2009 to 2010. His research

interests include cloud computing, big data management, and
distributed system security. He is a member of IEEE and ACM.

Chenglin Shen is a master candidate in the
School of Computer Science and Technology at
Huazhong University of Science and
Technology. She received the B.S. degree from
School of Computer Science at Wuhan
University in 2011. Her research interests
include cloud computing, system security, and
network security.

Heng He is a Ph.D. candidate in the School of
Computer Science and Technology at
Huazhong University of Science and
Technology, and a lecturer in the School of
Computer Science and Technology at Wuhan
University of Science and Technology. He
received the B.S. degree from School of
Computer Science at Hubei University of
Technology in 2004 and the M.S. degree from
School of Computer Science and Technology at
Huazhong University of Science and

Technology in 2007. His research interests include cloud computing,
peer-to-peer computing, network coding and network security.

Zhiyong Xu received the B.S. and M.S. in
Computer Science from Huazhong University of
Science and Technology, China in 1994 and
1997 respectively, and Ph.D. degree in
Computer Engineering from University of
Cincinnati in 2003. He is currently an Associate
Professor in the Department of Mathematics
and Computer Science at Suffolk University. His
research interests include cloud computing,
peer-to-peer computing, and parallel and

distributed systems. He is a member of IEEE.

Cheng-Zhong Xu received the B.S. and M.S. in
Computer Science from Nanjing University,
China in 1986 and 1989 respectively, and Ph.D.
degrees in Computer Engineering from the
University of Hong Kong in 1993. He is now a
Professor of Electrical and Computer
Engineering at Wayne State University and the
Director of the Cloud Computing Center in
Shenzhen Institute of Advanced Technology,
Chinese Academy of Science. His main

research interests include networked computing systems, reliability,
availability, power efficiency, and security. He is an editor of IEEE
Trans. on Computers (TC), IEEE Trans. on Parallel and Distributed
Systems (TPDS), IEEE Trans. on Cloud Computing (TCC) and J. of
Parallel and Distributed Computing (JPDC).

