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Abstract—Resource Description Framework (RDF) has been widely used in the Semantic Web to describe resources and
their relationships. The RDF graph is one of the most commonly used representations for RDF data. However, in many real
applications such as the data extraction/integration, RDF graphs integrated from different data sources may often contain
uncertain and inconsistent information (e.g., uncertain labels or that violate facts/rules), due to the unreliability of data sources.
In this paper, we formalize the RDF data by inconsistent probabilistic RDF graphs, which contain both inconsistencies and
uncertainty. With such a probabilistic graph model, we focus on an important problem, quality-aware subgraph matching over
inconsistent probabilistic RDF graphs (QA-gMatch), which retrieves subgraphs from inconsistent probabilistic RDF graphs that
are isomorphic to a given query graph and with high quality scores (considering both consistency and uncertainty). In order
to efficiently answer QA-gMatch queries, we provide two effective pruning methods, namely adaptive label pruning and quality
score pruning, which can greatly filter out false alarms of subgraphs. We also design an effective index to facilitate our proposed
pruning methods, and propose an efficient approach for processing QA-gMatch queries. Finally, we demonstrate the efficiency
and effectiveness of our proposed approaches through extensive experiments.

Index Terms—Quality-Aware subgraph matching, inconsistent probabilistic graph databases, adaptive label pruning, quality
score pruning.
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1 INTRODUCTION

RDF (Resource Description Framework) is a W3C standard
to describe resources on the Web and their relationships in
the Semantic Web [1]. Specifically, RDF data can be rep-
resented by either triples in the form of (subject, predicate,
object), or an equivalent graph representation.

Figure 1(a) shows an example of RDF triples extracted
from unstructured text, by using two different data ex-
traction methods. Specifically, the left column depicts 4
RDF triples by using extraction technique A, whereas the
right column shows another 4 RDF triples obtained from
extraction technique B. For example, on the left column
of Figure 1(a), the first triple, (〈John〉, 〈bornIn〉, 〈York〉),
has subject 〈John〉, predicate 〈bornIn〉, and object 〈York〉,
which indicates that John was born in the city of York.

Equivalently, 4 RDF triples on the left column of Figure
1(a) can be transformed to a graph, GA, as shown in Figure
1(b). For example, Triple (1): (〈John〉, 〈bornIn〉, 〈York〉)
can be converted into a directed edge (with label “bornIn”)
from vertex 〈John〉 to vertex 〈York〉. Similarly, we can also
obtain graph GB (in Figure 1(c)) from 4 RDF triples on
the right column of Figure 1(a).

Due to the unreliability of data sources [15], [17] (e.g.,
the data expiration or the inaccuracy of data extraction tech-
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Extraction Technique A: Extraction Technique B:
(1)(〈John〉, 〈bornIn〉, 〈York〉); (1’) (〈John〉, 〈bornIn〉, 〈New York〉);
(2) (〈John〉, 〈livesIn〉, “US”); (2’) (〈John〉, 〈livesIn〉, “UK”);
(3) (〈York〉, 〈isCityOf〉, “US”); (3’) (〈New York〉, 〈isCityOf〉, “UK”);
(4) (〈John〉, 〈visited〉, “City of York”). (4’) (〈John〉, 〈visited〉, “New York State”).

(a) RDF triples from unstructured text by extraction techniques A and B

(b) RDF graph GA (c) RDF graph GB

Fig. 1. An example of RDF triples and graphs by Extraction
Techniques A and B.

niques [27]), RDF graphs from different sources might con-
tain imprecise or inconsistent information. In the example
of Figure 1, by applying inaccurate extraction techniques
A and B to some unstructured text (e.g., Wikipedia data),
we may obtain two distinct RDF graphs, GA and GB , in
Figures 1(b) and 1(c), respectively. In particular, graphs GA

and GB may have conflicting vertex labels (e.g., John’s
birthplace is confusing, either “York” or “New York”). In
the applications such as data extraction/integration [10],
[11], in order to resolve such conflicting labels, we can
merge multiple versions of RDF graphs into a single
probabilistic RDF graph, where each vertex is associated
with its possible labels and their confidences to be true in
reality (inferred from the extraction accuracy or reliability
statistics of data sources over historical data).

As an example, Figure 2 illustrates a probabilistic RDF
graph G, which is integrated from two (inconsistent)
graphs GA and GB in Figures 1(b) and 1(c), respec-
tively. Each vertex in G is associated with uncertain la-
bels and their existence probabilities. For example, the
vertex at the bottom of G in Figure 2 has two possible
labels, “New York State” and “City of York”. That is,
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information.

Fig. 2. A probabilistic RDF graph G integrated from graphs
GA and GB in Figures 1(b) and 1(c), respectively.

John visited “New York State” with probability 0.8, or the
“City of York” with probability 0.2, where probabilities
can be inferred from the accuracy of information extraction
(IE) methods [27]. Similarly, the country (vertex) John lives
in is either “UK” with probability 0.6 or “US” with proba-
bility 0.4; the city in which John was born is either “York”
with probability 0.3, or “New York” with probability 0.7.
This way, 2 graphs from unreliable data sources can be
integrated into one probabilistic graph, which incorporates
inconsistent vertex labels by a probabilistic model.

Following the literature of probabilistic databases [9], we
consider the possible worlds semantics overs probabilistic
RDF graphs, where each possible world is a materialized
instance of the graph with (certain) vertex labels appearing
in the real world. In Figure 2, we can obtain a possible
world when each vertex is assigned with a deterministic
(certain) label, for example, the birthplace (vertex) of
John takes label “New York”, the country vertex takes
label “UK”, and the vertex of the visited place has label
“New York State”.

Although the probabilistic RDF graph can somewhat
incorporate conflicting labels in vertices, inconsistencies
may still exist in edges for some possible worlds of the
probabilistic graph, violating facts/rules. For example, in
probabilistic graph G of Fig. 2, one possible world of G
may contain vertex labeled by “New York” connecting with
“UK” through edge “isCityOf”, which is however violating
the fact that New York is a city in US (rather than UK).
Therefore, we call such inconsistent RDF data (violating
facts/rules) an inconsistent probabilistic graph.

To resolve the inconsistencies and guarantee the data
quality in possible worlds, we adopt the X-repair semantics
[7], which delete edges in the graph such that the remaining
graph has consistent labels, obeying facts/rules. Intuitively,
some edges (RDF triples) in the graph are not reliable,
and should not exist in reality. Thus, X-repair semantics
consider removing such edges from the graph in order to
improve the data quality. In the example of Figure 2, edge
“isCityOf” can be deleted in a possible world, if it has two
ending vertices with inconsistent labels “New York” and
“UK” (or “York” and “US”).

In this paper, we propose the quality-aware subgraph
matching problem (namely, QA-gMatch) in a novel context
of inconsistent probabilistic graphs G with quality guar-
antees. Specifically, given a query graph q, a QA-gMatch
query retrieves subgraphs g of probabilistic graph G that
match with q and have high quality scores (defined later
in Section 2.3). Note that, a single repaired graph via
edge deletions may have corrupted graph structure, and
fail to return matching subgraphs (e.g., by deleting edge

select ?visitedP lace ?birthplace
where {〈John〉 〈visited〉 ?visitedP lace.

〈John〉 〈bornIn〉 ?birthplace.
?birthplace 〈isCityOf〉 “US”. }

(a)
(b)

Fig. 3. A query graph q transformed from a SPARQL query.
TABLE 1

Symbols and descriptions.

Symbol Description

G a probabilistic RDF graph
pw(G) a possible world of a probabilistic RDF graph G

pwR(G) a repaired possible world of pw(G)
vi a vertex in probabilistic RDF graph G
l(vi).p the existence probability of a possible label l(vi) of vertex vi
eij a directed edge −−→vivj
eij .rp the repair confidence that edge eij should be deleted

“isCityOf” in Figure 2, no answer will be returned for
any query graph q that contains edge “isCityOf”). Thus,
instead, our QA-gMatch problem will consider subgraph
answers over all possible repairs in possible worlds of G
(i.e., all-possible-repair semantics [22]), and then return
those subgraph answers with good quality scores.

The QA-gMatch problem has many practical applications
such as the Semantic Web. For example, we can answer
standard queries, SPARQL queries, over inconsistent prob-
abilistic RDF graphs by issuing QA-gMatch queries. Figure
3(a) shows an example of a SPARQL query, which obtains
the place visited by John, as well as John’s birth place.
Equivalently, we can transform the SPARQL query to a
query graph q (as given in Figure 3(b)). Then, within
inconsistent probabilistic RDF graph G (given by Figure 2),
we can conduct a QA-gMatch query to find those subgraphs
g ⊆ G that are isomorphic to q with high quality scores,
where quality scores indicate the confidences that subgraphs
appear in the repaired probabilistic graphs of G.

One straightforward method to solve the QA-gMatch
problem is to offline enumerate all possible worlds of
probabilistic RDF graph G, repair these possible worlds
(via edge deletions), and obtain subgraphs with high quality
scores (QA-gMatch query answers) from the repaired possi-
ble worlds. However, since there are an exponential number
of repaired possible worlds, this method is very inefficient,
or even infeasible, to directly repair/store/query on the
materialized possible worlds, in terms of time and space
costs. Therefore, it is challenging to efficiently process the
QA-gMatch query. In this paper, we will propose effective
pruning methods, namely adaptive label pruning (based on
a cost model) and quality score pruning, to reduce the QA-
gMatch search space and improve the query efficiency.

We make the following contributions in this paper.

1) We propose the QA-gMatch problem in inconsistent
probabilistic graphs, which, to our best knowledge,
no prior work has studied.

2) We carefully design effective pruning methods, adap-
tive label and quality score pruning, specific for
inconsistent and probabilistic features of RDF graphs.

3) We build a tree index over pre-computed data of in-
consistent probabilistic graphs, and illustrate efficient
QA-gMatch query procedure by traversing the index.
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4) We demonstrate through extensive experiments the
query performance of our QA-gMatch approaches.

Section 7 reviews prior works on inconsistent, graph, and
probabilistic databases. Section 8 concludes this paper.

2 PROBLEM DEFINITION

Table 1 depicts the commonly used symbols in this paper.

2.1 Data Model for Probabilistic Graphs

Probabilistic graphs: In this subsection, we first give the
data model for probabilistic RDF graph.

Definition 2.1: (Probabilistic Graph) A probabilistic
graph G is a triple 〈V (G), E(G), Θ(G)〉 such that:

• V (G) is a finite set of vertices, each of which, vi, is
associated with a label set L(vi) containing possible
labels, l(vi), with probability l(vi).p;

• E(G) is a finite set of directed edges, each of which,
eij , is associated with a label l(eij); and

• Θ(G) is a mapping from V (G) × V (G) to E(G),
which contains (vi, vj) → eij , indicating that edge
eij connects vertices from vi to vj in graph G. �

In Definition 2.1, we define a probabilistic RDF graph
as a graph structure that has uncertain vertex labels. That
is, each vertex vi has one or multiple mutually exclusive
labels l(vi) with existence probabilities l(vi).p ∈ (0, 1],
where

∑
∀l(vi) l(vi).p = 1. In this paper, we assume that

there are no NULL values for vertex labels. Nonetheless,
our graph model can be easily extended by allowing label
probabilities

∑
∀l(vi) l(vi).p ≤ 1 (i.e., the vertex has the

NULL value with probability 1− ∑
∀l(vi) l(vi).p).

To our best knowledge, this work is the first effort to
study the quality-aware subgraph matching in inconsistent
probabilistic graphs. We simply assume that each vertex
stores possible labels, which are independent of labels in
other vertices. The case of correlated labels can be extended
by considering joint probabilities among labels in vertices.

In real applications such as the Semantic Web, the proba-
bilistic graph (mentioned in Definition 2.1) can be obtained
by the data extraction/integration as follows. Assume that
we have the RDF schema (e.g., ontology), which contains
meta information in application domains, for example,
(〈cityName〉, 〈isCityOf〉, 〈countryName〉). We can ex-
tract labels of vertices (entities) from unstructured text data,
by assigning each word (token) in the unstructured text with
a label (tag), using either Hidden Markov Model (HMM)
[24] or Conditional Random Field (CRF) model [18]. For
example, tokens “Y ork” and “UK” can be tagged by
labels 〈cityName〉 and 〈countryName〉, respectively. In
addition, we can also infer the tagging accuracy of subjects
or objects by HMM or CRF. In other words, vertex labels
are associated with probabilities that tags (labels) can truly
describe entities (i.e., subjects or objects). Moreover, during
the semantic parsing, the unstructured texts are annotated
with predicate-argument structures, called rolesets [12],
such as isCityOf(cityName, countryName) which takes
two arguments (entities) “cityName” and “countryName”.
Such rolesets can be used as a dictionary, which uniquely
maps the entities (and the predicate as well) onto the

ontology (i.e., the RDF schema of the knowledge base) via
the ontology mapping [12]. As a result, we can obtain edges
with deterministic labels (e.g., “isCityOf”), connecting en-
tities, which form probabilistic RDF graphs (with uncertain
vertex labels and deterministic edge labels).

Nonetheless, our proposed techniques (e.g., encoding
signatures and pruning methods) in this paper can be easily
extended to probabilistic graphs with both vertex and edge
label uncertainties, which will be discussed in Section 5.
Possible worlds of a probabilistic graph: Similar to
probabilistic databases [9], we consider the possible worlds
semantics of a probabilistic graph. Specifically, each pos-
sible world is a materialized instance of the probabilistic
graph, which corresponds to a certain graph with one label
assignment in vertices that may appear in the real world.
We formally define possible worlds in a probabilistic graph.

Definition 2.2: (Possible Worlds of a Probabilistic
Graph) Given a probabilistic graph G, a possible world,
pw(G), of G is a materialized graph where each vertex
vi ∈ V (G) is assigned with a certain label l(vi).

Then, the appearance probability, Pr{pw(G)}, of a
possible world pw(G) is given by:

Pr{pw(G)} = Pr

{∧
∀i

(Xi = l(vi))

}
=

∏
∀vi∈V (G)

l(vi).p. (1)

where Xi is a variable of possible label l(vi) that vertex vi
may be assigned with. �

In Definition 2.2, each possible world corresponds to one
vertex label assignment to the probabilistic graph. Since
each vertex vi can have more than one possible label, that is,
|L(vi)| (≥ 1), the total number of possible worlds (or label
combinations) is usually exponential,

∏
∀vi∈V (G) |L(vi)|,

where |S| is the number of elements in a set S. The
appearance probability of the possible world is given by
multiplying existence probabilities of labels in vertices (due
to the independence of labels).

2.2 Inconsistencies in Probabilistic Graphs

As mentioned in Section 1, probabilistic graphs are often
obtained from real-world applications such as the data
extraction/integration in the Semantic Web. Due to the unre-
liability of data sources or inaccurate extraction/integration
techniques, probabilistic graph data often contain inconsis-
tencies, violating some rules or facts. Here, rules or facts
can be specified by knowledge base or inferred by data
mining techniques, which is out of the scope of this paper.

As an example in Figure 2, an edge eij (associated
with label 〈isCityOf〉) has two ending vertices vi and
vj , where vertex vi has two possible labels “Y ork” and
“New Y ork”, and vertex vj has two uncertain labels
“UK” and “US”. Here, a well-known fact is that York
should be a city of UK, and New York is a city of US. Thus,
in a possible world that contains an edge eij with ending
vertices labeled by “Y ork” and “US” (or “New Y ork”
and “UK”), labels in vertices vi and vj are said to be
inconsistent, violating the fact.

Thus, two ending vertices of an edge are inconsistent,
if in some possible worlds their labels violate facts/rules.
We call a probabilistic graph that contains such inconsistent
vertex labels the inconsistent probabilistic graph.
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2.3 The QA-gMatch Problem
Repair in inconsistent probabilistic graphs: To resolve
inconsistencies and improve the data quality in possible
worlds of inconsistent probabilistic graphs, we adopt an
idea similar to the X-repair semantics [7] which repair data
by deleting tuples in relational tables. In particular, we can
repair inconsistent probabilistic graphs by deleting edges in
the graph such that the remaining graphs become consistent
(i.e., following facts/rules).

In Figure 2, consider a possible world of graph G that
contains an 〈isCityOf〉 edge eij with inconsistent labels
l(vi) =“Y ork” and l(vj) =“US”. To repair this possible
world (i.e., an instance of graph G), we can delete their in-
between edge eij , and only retain two disconnected vertices
vi and vj , such that there is no inconsistency in the repaired
graph. Here, the repaired graph indicates that John was born
in York and lives in the US, but there is no relationship
between birth and living places.

Note that, in real applications such as data integration,
for inconsistent labels, we cannot directly repair (delete)
edges for each data source in a pre-processing step before
the data integration, since this may lead to the corruption of
the integrated probabilistic graph. For example, in Figures
1(b) and 1(c), if we delete edges 〈isCityOf〉 between the
city name and country name, then the integrated graph in
Figure 2 would permanently lose this edge, and we may
lose important query results, due to the missing edge.

We give the definition of the repair in possible worlds of
inconsistent probabilistic graphs below.

Definition 2.3: (Repair in Possible Worlds of an Incon-
sistent Probabilistic Graph) Given a fact table, FT , indicat-
ing the relationships between vertex labels, and a possible
world pw(G) of a probabilistic graph G, a repair of pw(G)
is to delete a set of edges such that the resulting repaired
possible world, pwR(G), becomes consistent. �

In Definition 2.3, the fact table FT contains tuples of
facts that indicate the true relationships between subjects
and objects. Here, facts in FT can be obtained from some
knowledge base or learnt from rules carefully confirmed by
domain experts. They can be used to determine whether or
not an edge is inconsistent in the probabilistic graph.

As an example, one possible fact triple in FT is (〈York〉,
〈isCityOf〉, “UK”), which states that York is a city of UK.
In the case of an edge corresponding to triple (〈York〉,
〈isCityOf〉, “US”), we say that this edge in the graph is
inconsistent, since it violates the fact triple in FT .

A repaired possible world pwR(G) is a subgraph of the
original possible world pw(G), by deleting those edges in
pw(G), such that pwR(G) is consistent (i.e., with edges
that do not violate facts in FT ).

Note that, due to unreliable data sources or inaccurate
extraction/integration techniques, some edge connections in
a probabilistic graph may be erroneous, that is, sometimes
edges may not exist at all in reality. Thus, the repair
in probabilistic graphs should not only remove all the
inconsistent edges that violate the fact table FT , but also
delete some potentially inconsistent edges that are not
specified in FT . A repaired possible world, pwR(G), of

the graph is consistent, if there are no inconsistent edges
(violating FT ) after edge deletions.

To evaluate the confidence of our repair (i.e., edge
deletions), we can collect statistics about the reliability of
edges in the probabilistic graph. Specifically, we assume
that each edge eij is associated with a repair confidence
eij .rp ∈ [0, 1], which reflects the confidence that edge eij
might not exist and should be repaired (deleted). In real-
world applications, repair confidences can be obtained from
the accuracy of extraction/integration methods [14], [29].

Thus, for a repaired possible world pwR(G), its repair
weight, W (pwR(G)), is given by:

W (pwR(G)) =
∏

∀eij∈E(G)

{
(1 − eij .rp) if eij ∈ E(pwR(G));
eij .rp otherwise.

(2)

Intuitively, a higher repair weight implies higher confi-
dence that we repair over possible world pw(G).
Challenges of repair in probabilistic graphs: The repair
in inconsistent probabilistic graphs needs to deal with expo-
nential numbers of possible worlds pw(G) (w.r.t. |V (G)|)
and repaired possible worlds pwR(G) (w.r.t. |E(G)|). For
almost any query, the query answering over so many (re-
paired) possible worlds is not efficient or even not feasible,
in terms of time and space costs.

Thus, in this paper, rather than materializing and re-
pairing all possible worlds directly, we will propose a
metric, that is, quality score, to quantify the quality of
the returned QA-gMatch subgraphs, by considering con-
sistent query answering (CQA) [4], [21] over inconsistent
probabilistic graphs. Specifically, to compute the quality
score, we condense combinations of all possible worlds
and possible repairs (i.e., the all-possible-repair semantics
[22]), without materializing possible worlds or modifying
the original graph data. To improve the query efficiency, we
will also design effective pruning/indexing mechanisms and
QA-gMatch algorithms on inconsistent probabilistic graphs.
QA-gMatch in an inconsistent probabilistic graph: In
this paper, we aim to tackle the quality-aware subgraph
matching problem over inconsistent probabilistic graphs G,
under the all-possible-repair semantics [22] (i.e., exploring
all possible repairs on possible worlds of probabilistic
graphs). Specifically, our problem retrieves subgraphs in G
that match with a given query graph and have their quality
scores higher than a threshold.

Definition 2.4: (Quality-Aware Subgraph Matching in
Inconsistent Probabilistic Graphs, QA-gMatch) Given an
inconsistent probabilistic graph G, a fact table FT , a query
graph q, and a threshold αg , a quality-aware subgraph
matching in inconsistent probabilistic graph (QA-gMatch)
retrieves subgraphs g ⊆ G such that:

• g is isomorphic to q (denoted as g ≡ q); and
• the quality score score(g) > αg .

where score(g) is defined as:

score(g) =
∑

∀pw(G)

Pr{pw(G)} · χ(∃pwR
(G), g ⊆ pw

R
(G) ∧ g ≡ q) · W (g).

(3)

Here, if z is true, χ(z) = 1; otherwise, χ(z) = 0. Moreover,
g ≡ q is true, if g and q are isomorphic. �
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In Definition 2.4, the query graph q contains information
such as the graph structure and query labels l(q i) in vertices
qi ∈ V (q). Subgraph g is the QA-gMatch answer, if g and
q are isomorphic (in terms of both graph structure and label
matching) and their quality scores are above threshold α g .
Note that, here we do not require specifying query labels
for all vertices in query graph q (equivalently transformed
from the SPARQL query for RDF data). When the label
of some vertex qi is not specified, we will consider it as a
wildcard (i.e., being able to match with any label) during
the isomorphism checking (g ≡ q).

The QA-gMatch problem (given in Definition 2.4) is very
useful in real-world applications. As mentioned in Section
1, in the Semantic Web, we can use QA-gMatch to answer
SPARQL queries over an inconsistent probabilistic RDF
graph G. In particular, a SPARQL query can be translated
into a query graph q (see an example in Figure 3), in
which labels of vertices are obtained from conditions in the
where clause. Then, the answering of the SPARQL query
on inconsistent probabilistic RDF graph G corresponds to
the process of solving the QA-gMatch problem, that is,
searching subgraphs g in G that are isomorphic to q with
high quality scores (i.e., score(g) > αg).

Due to probabilistic and inconsistent features of inconsis-
tent probabilistic graphs, efficient QA-gMatch processing
is quite challenging. One straightforward method is to
consider every subgraph g ⊆ G that is isomorphic to
query graph q, and compute its quality score score(g) by
enumerating an exponential number of the repaired possible
worlds. However, this method is quite costly. That is, the
isomorphism checking between graphs g and q is NP-
hard; what is worse, for each subgraph g (⊆ G), the time
complexity of computing the score score(g) is given by
O(2|V (G)|+|E(G)|), which is very high and unacceptable.
Inspired by this, in the sequel, we will propose effective
pruning methods to reduce the QA-gMatch search space,
and design indexing mechanisms to facilitate the pruning
during the QA-gMatch processing.

3 PROBLEM REDUCTION

As mentioned in Definition 2.4, to obtain QA-gMatch
answers (i.e., subgraphs g), we need to compute the qual-
ity score score(g) (given in Eq. (3)), which involves an
exponential number of repaired possible worlds. The direct
computation of score(g) over repaired possible worlds is
rather costly. Below, we will derive the formula of score(g)
so that this score can be computed over edges of graph g.

Lemma 3.1: (The Computation of quality score,
score(g)) The quality score, score(g), given in Eq. (3)
can be written as:

score(g) =

⎛
⎜⎝ ∏

∀eij∈E(g)

(1 − eij .rp)

⎞
⎟⎠ ·

⎛
⎝ ∏

∀vi∈V (g)

l(vi).p

⎞
⎠ (4)

Proof: Please refer to Appendix A in supplementary
materials.

Lemma 3.1 reduces our QA-gMatch problem over an
exponential number of (repaired) possible worlds in prob-
abilistic RDF graph G to the one on vertices/edges in
subgraphs g (⊆ G). After the problem reduction, the

time complexity to compute the quality score becomes
O(|E(g)| + |V (g)|).
4 PRUNING STRATEGIES

4.1 Adaptive Label Pruning

In this subsection, we design an adaptive label pruning
method specific for probabilistic graphs, which adaptively
encodes label/structural information in signatures and filters
out false alarms of QA-gMatch candidates via signatures.

Here, the design of signatures takes into account a special
feature of probabilistic RDF graphs, that is, some vertices
in graphs may incur high degrees. Thus, our basic idea of
the signature design is to adaptively allocate more space for
encoding vertices with high degrees (less space for those
with low degrees), and maximize the pruning power. We
also design a cost model to guide the signature generation.

4.1.1 Design of Label Signatures

We first present the details of our label signatures for prob-
abilistic graphs, which can be used for our adaptive label
pruning. Specifically, for each vertex v i ∈ V (G), we will
produce its signatures sig(vi) for labels of its surrounding
(k-hop) vertices/edges. Without loss of generality, we first
discuss label signatures for vertices below.
Label signature for vertices: We will generate the label
signature sig(vi) for each vertex vi ∈ V (G), which con-
tains the label information of vertex vi and its surrounding
neighbors in the graph. Intuitively, we can use such a label
signature to check the existence of a vertex label, and thus
enable the pruning for the QA-gMatch search (which will
be discussed later in Section 4.1.2).

Particularly, to build label signature sig(vi), we start
from vertex vi, and traverse the graph to enumerate all paths
with lengths equal to k, where 0 ≤ k ≤ kmax and kmax is
the maximum possible path length in a query graph q.

Then, we can obtain kmax vertex sets, Sk(vi) (0 ≤ k ≤
kmax), which contain all vertices vj that have path lengths
to vi equal to k. For each vertex set Sk(vi), we maintain a
label signature, sigk(vi), which is a bit vector of size B and
encodes all possible labels in vertex set Sk(vi). Initially, all
elements, sigk(vi)[z] (0 ≤ z < B), in the label signature
sigk(vi) are zeros. Then, for each possible label l(vj) of
vertex vj ∈ Sk(vi), we map it to a random position in
sigk(vi) by using a hashing function H(x) (i.e., H(l(vj))-
th position), and set sigk(vi)[H(l(vj))] to 1.

In this paper, we use a hashing function H(x) = (a ·x+
b)modB to produce random numbers within [0, B), where
a and b are random numbers. To reduce the chance of label
conflicts (i.e., distinct labels mapped to the same positions),
we can utilize multiple hashing functions H(x) (with
distinct (a, b)-pairs) on different bit vectors. Nonetheless,
for the sake of clear illustration, in this paper, we will
simply use one hash function on each signature sigk(vi).
Example of vertex label signatures: Figure 4 illustrates an
example of encoding labels of vertices via signatures. In
particular, Figure 4(a) shows a small probabilistic graph
G with 4 vertices v1, v2, v3, and v4. Moreover, each vertex
(e.g., v1) in G is associated with its possible labels and
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(a) inconsistent probabilistic graph G (b) label signatures of vertex v1 (kmax = 3) (c) query graph q

Fig. 4. Illustration of label signatures and adaptive label pruning.

appearance probabilities (e.g., label a with probability 0.5
and b with probability 0.5).

In Figure 4(b), we show how to build 4 label signatures,
sig0(v1), sig1(v1), sig2(v1), and sig3(v1), for vertex v1,
where each signature is a bit vector of size 8 (= B).

For sig0(v1), since vertex v1 has 0 distance to itself,
v1 is the only vertex in set S0(v1), and we thus hash v1’s
labels a and b into the signature.

Then, for signature sig1(v1), there are two paths v1 →
v2 and v1 → v3 of length 1. Thus, we can obtain vertex
set S1(v1) = {v2, v3}, which contains vertices that are 1-
hop away from v1. Next, we map possible labels of v2 and
v3 into the signature sig1(v1). Here, labels c and e have
conflicts mapping to the same position in the bit vector.

As illustrated in Figure 4(b), starting from the 2 paths
with length 1 (for sig1(v1)), we can continue to expand
them by including vertex v2, v3, or v4. As a result, for
signature sig2(v1), we can have 3 paths of length 3, and
obtain vertex set S2(v1) = {v2, v3, v4}. Similarly, we can
hash their vertex labels into bit vector, and obtain sig2(v1).

Finally, for signature sig3(v1), we can only expand path
v1 → v2 → v3 (of length 2 for sig2(v1)) by including
vertex v4. We cannot expand the other two paths of length
2, since all connecting vertices have been visited in those
2 paths (e.g., for path v1 → v3 → v2, both vertices v1 and
v3 that are adjacent to v2 have been accessed in the path).
Thus, we have vertex set S3(v1) = {v4}, and labels l and
h are hashed into sig3(v1). �
Label signature for edges: The case of edge label signa-
tures is quite similar to label signatures for vertices. We
also start from each vertex vi ∈ V (G), and traverse graph
G to generate edge label signatures, sige

k(vi), for vertices
with path lengths to vi equal to k, where 1 ≤ k ≤ kmax.

Specifically, for each path from vi to vj with length k,
we first obtain the label of the last edge e.j on this path,
and then hash the label into the H(l(e.j))-th position in
sigek(vi). This way, we can construct edge label signatures
for labels of the k-th edges on paths from v i.
Example of edge label signatures: In the previous example
of Figure 4(a), edge signature sige

1(v1) encodes edge
labels {u, t}, sige2(v1) contains labels {w, o}, and sige

3(v1)
represents label {o}. �

For differences of our synopses from that in prior works,
please refer to Appendix B.

4.1.2 Pruning with Label Signatures

Next, we illustrate how to enable the pruning with label
signatures discussed above, by using an example in Figure

4. Assume that we have a query graph q, as shown in Figure
4(c). Similar to the construction of label signature in graph
G, we start from vertex q1 ∈ V (q) , and generate signatures
sigk(q1), where 0 ≤ k ≤ 2.

Suppose graph G is a candidate graph that may match
with query graph q. We want to utilize the signatures,
sigk(q1) and sigk(v1), to enable the pruning. As an ex-
ample, if q1 matches with v1, then label a specified by q1
should also appear in vertex v1. In other words, it must
hold that: sig0(q1)[1] = sig0(v1)[1] = 1.

The lemma below enables label pruning via signatures.
Lemma 4.1: Given a query graph q and a subgraph g in

a probabilistic RDF graph G, if subgraph g is matching
with q, then for all corresponding vertex pairs (q i, vi), and
for any 0 ≤ k ≤ kmax, we have:

sigk(qi)
∧

sigk(vi) = sigk(qi) (5)

where
∧

is the bit-AND operator that is performed over
two bit vectors of size B.

From the matching property with signatures in Lemma
4.1, we can immediately obtain the pruning with label
signatures in the theorem below.

Theorem 4.1: (Pruning with Label Signatures) Given a
query graph q and a subgraph g in a probabilistic RDF
graph G (with corresponding vertex pairs (q i, vi)), the
subgraph g is not a QA-gMatch answer, if Eq. (5) does not
hold for some vertex pair (qi, vi) and some k ∈ [0, kmax].

In the example of Figure 4(c), we can check the condition
in Eq. (5) for all signature pairs (sigk(qi), sigk(vi)), where
k varies from 0 to 2. When k = 0 or 1, the condition holds.
However, for k = 2, we have sig2(qi)

∧
sig2(vi) = 0 
=

sig2(qi), indicating that label a exists in query vertex q3
(with distance 2 to q1), but it does not exist in vertex v3, v2,
or v4 (with distance 2 to v1). Thus, we know that q1 cannot
match with v1, and we can safely prune all the subgraph
candidates that have vertex v1 matching with q1.

4.1.3 Adaptive Label Signatures

Up to now, we have discussed the data structure for storing
vertex/edge label signatures. In the sequel, we will design
adaptive label signatures, which can optimize the pruning
power of label signatures, adaptive to specific features of
vertices in probabilistic RDF graphs (e.g., label distribu-
tions, vertex degrees, and structural information).
Adaptive vertex/edge label signatures: We observe that,
in a probabilistic RDF graph, there are many vertices with
high degrees. As a consequence, if we construct signatures
sig(vi) for a vertex vi of high degree deg(vi) (e.g., � B),
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(a) adaptive label signatures (m = 2)

(b) query graph q′

Fig. 5. Illustration of adaptive label pruning.

then most bits in signature sig1(vi) are very likely to be set
to 1. This indicates that there are many conflicting labels
mapping into the same positions in the signature, which
would incur low or even no pruning power.

Inspired by the special feature of high degrees in prob-
abilistic RDF graph, we propose to adaptively divide all
paths (starting with vertex vi) into m groups, PG1(vi),
PG2(vi), ..., PGm(vi), where m is an adaptive parameter
within [1,mmax], and mmax is constrained by the space to
store signatures of a vertex in index nodes (which will be
discussed later).

Intuitively, we adaptively create different numbers of
signatures specific for each vertex vi ∈ V (G), such that
the conflict rate of this vertex can be reduced.

Clearly, when m = 1, it exactly corresponds to the case
in Section 4.1.1, where we build signatures on all paths (as
a single group), which may lead to high conflict rates (in
turn, low pruning power). On the other hand, if we consider
each path as one individual group, then we can achieve the
lowest conflict rate in signatures (i.e., the highest pruning
power). However, in this case, the number of groups (paths)
is also large, which requires higher computation cost to
check more signatures. Thus, there is a trade-off between
conflict rate (pruning power) and computation cost. We will
delay the discussion of obtaining groups of paths, based on
a cost model, to Section 4.1.4.

After we obtain path groups, for each group PGm′(vi),
we can construct signatures, denoted as sig

(m′)
k (vi), by

encoding labels of last vertices in paths (similar to the
example in Figure 4(b)), where 1 ≤ m ′ ≤ m.
Example of adaptive label signatures: We illustrate adap-
tive label signatures by using the example of a probabilistic
RDF graph in Figure 4(a), where m = 2. Instead of
encoding labels for all paths surrounding vertex v1 (as
shown in Figure 4(b)), Figure 5(a) divides all (longest)
paths into 2 partitions,

PG1(v1) = {v1 → v2 → v3 → v4}, and

PG2(v1) = {v1 → v3 → v2, v1 → v3 → v4}.
Then, for each group PGm′(v1), we can construct sig-

natures sig
(m′)
k (v1) by hashing uncertain labels of k-hop

vertices from v1 in set S(m′)
k (v1), where m′ ∈ {1, 2}, and

0 ≤ k ≤ 3.
For example, in path group PG2(v1), to obtain signa-

ture sig
(2)
1 (v1), we first obtain vertex set S

(2)
1 (v1) which

contains vertex v3. Thus, we can hash labels, e and f , of
v3 into signature sig

(2)
1 (v1). �

Pruning with adaptive vertex/edge label signatures:
Given adaptive vertex/edge label signatures, we are now
ready to utilize them to apply the adaptive label pruning
method to reduce the QA-gMatch search space, which is
described in the following theorem.

Theorem 4.2: (Adaptive Label Pruning) Given a query
graph q and a subgraph g in a probabilistic RDF graph G
(with corresponding vertex pairs (qi, vi)), the subgraph g
is not a QA-gMatch answer, if for some vertex pair (q i, vi)
and for all path groups PGm′(vi), Eq. (5) does not hold
with some k ∈ [0, kmax].

With adaptive label signatures, we can achieve higher
pruning power, as illustrated in the example below.
Example of adaptive label pruning: Figure 5(b) shows a
query graph q′, where query nodes q′1, q′2, and q′3 have
labels a, b, and l, respectively. Our goal is to check whether
labels of q′ is matching with that of a subgraph g of
probabilistic RDF graph G given in Figure 4(a) (i.e., the
graph G without edge e13).

If we still apply the pruning with label signatures (m =
1) in Figure 4(b), subgraph g cannot be pruned (since the
condition in Eq. (5) holds for all k = 0 ∼ 2).

On the other hand, if we use adaptive label signature
(m = 2) in Figure 5(a), we can safely prune subgraph g.
This is because for path group PG1(v1), we have label l
(in q′3) is not hashed into the same position as labels e and
f (thus, sig(1)2 (v1)∧sig(1)2 (q′1) 
= sig

(1)
2 (q′1) hold); for path

group PG2(v1), label d (in q′2) is not hashed into the same
location as labels e and f (i.e., sig (2)

1 (v1) ∧ sig
(2)
1 (q′1) 
=

sig
(2)
1 (q′1) hold). Since subgraph g can be pruned in both

groups, g cannot be the QA-gMatch answer. �

4.1.4 Cost Model for Adaptive Label Signatures

We now discuss the remaining issue how to obtain m path
groups PG1(vi), PG2(vi), ..., and PGm(vi) from all paths
starting with vertex vi ∈ V (G), which can be used to
construct adaptive label signatures. As mentioned earlier,
fine partitioning granularity of path groups can achieve
low conflict rates (or high pruning power) but high cost
of checking more signatures.

Thus, our goal is to design a cost model to guide the path
group partitioning, such that the resulting label signatures
can minimize the total computation cost of pruning.
Cost model for the computation cost: To achieve the
goal above, we propose a cost model to formalize the
total computation cost of signature operations, which is a
criterion for the partitioning. Without loss of generality,
assume that the unit cost of an operation (e.g., bit-AND or
comparison) on two signatures of size B is denoted as C.

For each path group PGm′(vi), we check the pruning
condition in Eq. (5), for k hop values 0, 1, ..., kmax in order.
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Once the condition does not hold for some k ′ ∈ [0, kmax],
we can stop checking for the remaining k values. Thus, in
this case, the computation cost is given by (k ′ + 1) · C.

Below, we give the expected computation cost,
Costm′(vi), of checking pruning conditions via label sig-
natures in a group PGm′(vi).

Costm′ (vi) =

⎛
⎝kmax∑

k′=0

Pr{PGm′(vi) can be pruned at hop k
′} · (k′

+ 1) · C
⎞
⎠(6)

+Pr{PGm′ (vi) cannot be pruned at hop kmax} · (kmax + 1) · C

=

⎛
⎝kmax∑

k′=0

P1(k
′) · (k′ + 1) · C

⎞
⎠+ P2(kmax) · (kmax + 1) · C

In Eq. (6), the first term corresponds to the computation
cost when path group PGm′(vi) can be pruned at some
hop k′ ∈ [0, kmax], which is given by the probability that
the group is pruned at hop k ′ (i.e., P1(k

′) given in Eq. (6))
times the filtering cost (i.e., (k ′ + 1) · C). Moreover, the
second term is the expected cost that this group cannot be
pruned by all the kmax signatures, which is given by the
probability that the group cannot be pruned (i.e., kmax)
times the filtering cost (kmax + 1) · C.
Computation of P1(k

′): We compute the probability P1(k
′)

that the group is pruned at hop k ′, by considering conflict
rates in label signatures of size B. Specifically, the prob-
ability that a label is mapped to a random position in the
signature is given by 1/B. Thus, with U labels hashed in
the signature, the probability that a position is empty (i.e.,
“0”) is given by (1− 1

B )U ; similarly, the probability that a
position is set to “1” is given by: 1− (1− 1

B )U .
Therefore, we can collect statistics of label information

in label signatures. For example, for each group PGm′(vi),
we can obtain the number, Um′k′ , of labels that are hashed
into signature sigk′(vi).

Then, we rewrite P1(k
′) as:

P1(k
′) =

⎛
⎝k′−1∏

j=0

(
1 −

(
1 − 1

B

)U
m′j

)⎞⎠ ·
(
1 − 1

B

)U
m′k′

Computation of P2(kmax): Similar to P1(k
′), we can

rewrite P2(kmax) as:
P2(kmax) =

kmax∏
j=0

(
1 −

(
1 − 1

B

)U
m′j

)

The total computation cost, Costtotal(vi): By substituting
both P1(k

′) and P2(kmax) into Eq. (6), we can calculate
the computation cost, Costm′(vi), for the m′-th group.

Thus, for all the m groups, the total computation cost,
Costtotal(vi), is given by:

Costtotal(vi) =

m∑
m′=1

Costm′(vi) (7)

Therefore, essentially, we want to find a good partitioning
strategy over paths (starting from vi), which minimizes the
total computation cost, Costtotal(vi), given in Eq. (7).
Path partitioning based on cost model: Our basic idea
is to partition paths into m groups, for different m values
from 1 to mmax, and choose an m value, as well as its par-
titioning strategy, that achieves the minimum computation
cost Costtotal(vi) in Eq. (7).

Due to exponential number of possible partitioning meth-
ods, we propose an approximation approach to find a good

Procedure Vertex Label Signature Generator {
Input: a probabilistic RDF graph G, a starting vertex vi, and maximum hop kmax

Output: vertex label signature sig(vi).
(1) S0(vi) = {vi};
(2) Path0(vi) = {vi};
(3) encode labels l(vi) of vertex vi in signature sig0(vi)
(4) k = 0;
(5) while k < kmax // for generating signature sigk(vi)
(6) for each path PA ∈ Pathk(vi)
(7) expand path PA to PAnew by including a vertex vj
(8) add the expanded paths PAnew to Pathk+1(vi)
(9) add vertex vj to Sk+1(vi)
(10) hash labels l(vj) of vertex vj ∈ Sk+1(vi) into signature sigk+1(vi)
(10’) // adaptively hash labels into signature of the corresponding path group
(11) k = k + 1;
(12) return sig0(vi), sig1(vi), ..., and sigkmax (vi)

}Fig. 6. The construction of vertex label signature sig(v i).

partitioning strategy for a particular m value. Specifically,
we start from vertex vi to traverse the graph, and each time
we obtain a set, Pathk(vi), of paths with length k.

If |Pathk(vi)| ≤ m, we continue to expand the length
of these paths. Otherwise (i.e., |Pathk(vi)| > m), we
will divide these paths into m groups. Initially, we first
randomly select m pivot paths with their individual k-hop
signatures, and then assign the remaining paths to pivots
with the closest signatures under the Hamming distance.
After the initialization, we evaluate the computation cost
of such partitions based on our proposed cost model in
Eq. (7). In order to obtain good results, we perform random
swapping of paths among path groups, in order to obtain a
better partitioning strategy with lower computation cost.
Construction of vertex label signatures: Figure 6 illus-
trates the pseudo-code of generating vertex label signature,
namely procedure Vertex Label Signature Generator,
which produces label signatures for a vertex v i. In brief,
the procedure starts with vertex vi, and maintains two sets,
Pathk(vi) and Sk(vi), which are the set of paths with
lengths k and the set of vertices k hops from vertex v i

(via some path), respectively. In each iteration (lines 5-
11), we compute set Pathk+1(vi) by expanding paths in
Pathk(vi), and update Sk+1(vi) with newly included ver-
tices correspondingly (lines 7-9). Then, we can obtain label
signature sigk+1(vi) with labels from set Sk+1(vi) (line
10). In the case of constructing adaptive label signatures,
we hash labels of vertices to the signature sig

(m′)
k+1 (vi) of

the corresponding path group (line 10’). Finally, we return
all the signatures sigk(vi), for 0 ≤ k ≤ kmax (line 12).
Construction of edge label signatures: The construc-
tion of edge label signatures is similar to that of ver-
tex label signatures. The algorithm of constructing edge
label signature sig(erj) is the same as procedure Ver-
tex Label Signature Generator in Fig. 6, except that in
line 10 we hash the edge label l(erj) of the newly included
edge erj ∈ PAnew into signature sigk+1(erj), which will
be returned by line 12.

4.2 Quality Score Pruning
While the adaptive label pruning method filters out those
subgraphs whose labels do not match with the query graph,
we next present a quality score pruning method, which
prunes subgraph candidates g with quality scores score(g)
(given in Eq. (4)) less than or equal to threshold α g.

Our basic idea of the quality score pruning is as fol-
lows. Assume that given any subgraph g, we can quickly
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obtain the upper bound, ub score(g), of the quality score
score(g), with low cost. Then, as long as it holds that
ub score(g) ≤ αg , we can safely prune g. We summarize
the quality score pruning in the lemma below.

Lemma 4.2: (Quality Score Pruning) For a subgraph g,
let ub score(g) be an upper bound of its quality score
score(g). Then, given a quality score threshold αg , if
ub score(g) ≤ αg holds, subgraph g can be safely pruned.

Proof: Derived from the inequality transition, we have
score(g) ≤ ub score(g) ≤ αg. Thus, subgraph g cannot
be the QA-gMatch result (based on Definition 2.4).

4.2.1 Derivation of Score Upper Bound

We now derive a score upper bound ub score(g) for a
subgraph g, based on the formula of score(g) in Eq. (4).
Score upper bounds of subgraphs g, ub score(g): Given
a subgraph g that is isomorphic to query graph q, we can
overestimate existence probabilities, l(vi).p, of its vertex
labels, and compute the score upper bound ub score(g) in
the lemma below.

Lemma 4.3: (Online Upper Bound of quality score,
ub score(g)) Assume that a subgraph g is structurally
isomorphic to a query graph q. Then, we can obtain the
score upper bound:

ub score(g) =

⎛
⎜⎝ ∏

∀eij∈E(g)

(1 − eij .rp)

⎞
⎟⎠ ·

⎛
⎝ ∏

∀vi∈V (g)

l(vi).pmax

⎞
⎠ (8)

where l(vi).pmax = max∀l(vi){l(vi).p}.
In Lemma 4.3, the score upper bound ub score(g)

uses l(vi).pmax to overestimate existence probabilities of
possible labels. Note, however, that this bound assumes
that subgraph g is isomorphic to query graph q. Since q
is usually online given in practice, it is not efficient (e.g.,
NP-hard) to perform the isomorphism checking, before we
use Lemma 4.3 to compute online score upper bound.

Therefore, we will propose an efficient pre-computation
approach below to enable fast calculation of score bounds
via offline pre-computed data.
Score upper bounds in candidate graphs g′,
ub score(g): In particular, instead of directly computing
score upper bounds for subgraphs g (≡ q), we will consider
some candidate graphs g ′ in G, and offline estimate score
upper bounds for any subgraph g (with |V (q)| vertices and
|E(q)| edges) within candidates g ′.

To obtain such candidate graphs g ′, we can start from
each vertex vi ∈ V (G), and traverse probabilistic RDF
graphs G in a breadth-first manner. This way, we can
retrieve subgraphs g ′, whose vertices vj are at most kmax

hops away from vertex vi (via some paths). Then, we
can derive an upper bound, ub score(g), of quality score
score(g) below, for any subgraph g ⊆ g ′.

Specifically, for all vertices vi ∈ V (g′), we denote their
maximum existence probabilities of labels (i.e., l(v i).pmax

given in Lemma 4.3) as vp1, vp2, ..., and vp|V (g′)|. More-
over, all edges eij ∈ E(g′) are associated with repair
confidences erp1, erp2, ..., and erp|E(g′)|.

Without loss of generality, we assume that vp1 ≥ vp2 ≥
... ≥ vp|V (g′)|, and erp1 ≤ erp2 ≤ ... ≤ erp|E(g′)|. Let

|V (q)| and |E(q)| be the numbers of vertices and edges in
query graph q, respectively. We have the following lemma
to derive the score upper bound ub score(g).

Lemma 4.4: (Offline Upper Bound of quality score,
ub score(g)) Given a query graph q and a candidate graph
g′, the upper bound, ub score(g), of quality score for any
subgraph g ⊆ g ′ (which may match with q) is:

ub score(g) =

⎛
⎝|E(q)|∏

i=1

(1 − erpi)

⎞
⎠ ·

⎛
⎝|V (q)|∏

j=1

vpj

⎞
⎠ . (9)

In Lemma 4.4, erpi and vpj can be offline pre-computed
within candidate graphs g ′, where 1 ≤ i ≤ |E(g′)| and
1 ≤ j ≤ |V (g′)|. Then, specific for query graph q, we only
use the first |E(q)| smallest erpi’s and |V (q)| largest vpj’s
to derive the score upper bound ub score(g) in Eq. (9).
Example of deriving score upper bound: In the example of
Figure 4(a), maximum existence probabilities of vertex
labels are given by: l(v1).pmax = 0.5, l(v2).pmax = 0.7,
l(v3).pmax = 0.6, and l(v4).pmax = 0.8. Thus, these
maximum existence probabilities in decreasing order are
vp1 = 0.8, vp2 = 0.7, vp3 = 0.6, and vp4 = 0.5.
Further, in graph G, we can sort repair confidences in
ascending order: erp1 = 0.1, erp2 = 0.2, erp3 = 0.3, and
erp4 = 0.4. Thus, for query graph q in Figure 4(c) with
4 vertices and 3 edges, score upper bound ub score(g) of
any subgraph g ⊆ G is:

ub score(g) =

3∏
i=1

(1 − erpi) ·
4∏

j=1

vpj

= (1 − 0.1) × (1 − 0.2) × (1 − 0.3) × 0.8 × 0.7 × 0.6 × 0.5.

Therefore, ub score(g) above is the score upper bound
for any subgraph g ⊆ G that may match with q. �

4.2.2 Linear Approximation of Score Upper Bounds
According to Lemma 4.4, we need to offline pre-compute
and store repair confidences erpi and existence probabilities
vpj , which requires O(|E(g ′)|+ |V (g′)|) space cost. Sim-
ilarly, the time complexity to online compute ub score(g)
in Eq. (9) is also O(|E(g ′)|+ |V (g′)|) in the worst case. In
order to reduce the space and online computation costs, we
propose a linear approximation approach, which approxi-
mates (upper bounds) terms in Eq. (9) and only requires
O(1) space/time costs.
Rewriting score upper bounds ub score(g) in Eq. (9):
We first rewrite Eq. (9) by taking logarithms on both hand
sides, and obtain:
ln(ub score(g)) =

⎛
⎝|E(q)|∑

i=1

ln(1 − erpi)

⎞
⎠ ·

⎛
⎝|V (q)|∑

j=1

ln(vpj)

⎞
⎠ . (10)

Next, we introduce two functions UB1(x) and UB2(x),
that is: UB1(x) =

x∑
i=1

ln(1 − erpi) (11)

UB2(x) =

x∑
j=1

ln(vpj) (12)

where the range of input x in UB1(x) is [1, |E(g′)|], and
input x in UB2(x) falls into range [1, |V (g ′)|].

Thus, by substituting UB1(x) and UB2(x) (in Eqs. (11)
and (12), respectively) into Eq. (10), we have:

ub score(g) = exp(UB1(|E(q)|) + UB2(|V (q)|)) (13)

where exp(z) = ez .
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(a) UB1(x) (b) UB2(x)

Fig. 7. Linear approximations of score upper bounds.
Linear approximation of UB1(x) and UB2(x): As
illustrated in Figure 7, for a candidate graph g ′, we plot its
functions UB1(x) and UB2(x) (denoted as circular points)
for all possible inputs x in 2D spaces.

As mentioned earlier, the space cost to store these
circular points is high. Thus, we propose to use line
functions f1(x) = a1x + b1 and f2(x) = a2x + b2
to approximate upper bounds of UB1(x) and UB2(x),
respectively. In other words, we have f1(x) ≥ UB1(x)
for all 1 ≤ x ≤ |E(g′)|, and f2(x) ≥ UB2(x) for all
1 ≤ x ≤ |V (g′)|.

Therefore, we can further rewrite Eq. (14), and obtain
a score upper bound ub scorelinear(g) below, which is
efficient to compute (i.e., O(1) time complexity):

ub scorelinear(g) = exp(f1(|E(q)|) + f2(|V (q)|)) (14)

Optimal linear approximation: The only remaining issue
is how to (offline) pre-compute optimal linear approxima-
tions f1(x) and f2(x) over points for UB1(x) and UB2(x),
respectively. Since UB1(x) and UB2(x) are similar, we
focus on UB1(x) in the discussion below.

To obtain an optimal approximation f1(x), we have two
optimization goals:

• f1(x) ≥ UB1(x), and
• minimize the sum of squared distances between f1(x),

and UB1(x), that is:

T =

|E(g′)|∑
x=1

(f1(x) − UB1(x))
2 =

|E(g′)|∑
x=1

(a1x + b1 − UB1(x))
2.

Note that, f1(x) should be an upper bound of UB1(x)
(in order to compute score upper bounds), and as close
to UB1(x) as possible. As proved in [2], such an optimal
linear approximation must pass through at least one anchor
point A. Without loss of generality, we denote this anchor
point as A(xA, yA) for yA = UB1(xA) in the 2D space
(e.g., Figure 7(a)). Thus, we have f1(x) = a1x−a1xA+yA.

To minimize T in our goal, we let:

∂T

∂a1

=
∂

∂a1

⎛
⎝|E(g′)|∑

x=1

(a1x− a1xA + yA − UB1(x))
2

⎞
⎠ = 0,

from which we obtain:

a1 =

∑|E(g′)|
x=1 (UB1(x) − yA) · (x − xA)∑|E(g′)|

x=1 (x − xA)2
. (15)

Thus, we have:
b1 = −a1xA + yA (16)

Therefore, we will set each point (x, UB1(x)) in the
2D space (as shown in Figure 7(a)) as the anchor point
A, and obtain its optimal linear function by computing
(a1, b1)-pair via Eqs. (15) and (16). Then, we select one
of linear functions as f1(x) that satisfies the condition

f1(x) ≥ UB1(x) and minimizes T . Thus, for the resulting
f1(x) function, we only need to store 2 parameters a1 and
b1 with O(1) space cost.

Similar to f1(x), we can also compute the optimal linear
approximation function f2(x) for UB2(x). The details are
similar, and thus omitted.

5 QUERY PROCESSING APPROACH

5.1 Index Construction
Pre-processing of probabilistic RDF graphs: Recall that,
the QA-gMatch problem retrieves those subgraphs g that
are both isomorphic to query graph q and with quality
score score(g) > αg . In order to utilize our adaptive
label pruning and quality score pruning, we start from each
vertex vi ∈ V (G) of graph G, and extract a candidate
graph g′ ⊆ G whose vertices are within kmax hops from
vi (potentially containing subgraph g). Then, we can obtain
their adaptive label signatures sig(vi) and sige(vi), as well
as numbers of vertices/edges (denoted as cnt(vi) = |V (g′)|
and cnte(vi) = |E(g′)|). Moreover, to derive score upper
bounds (for quality score pruning), we also compute linear
approximation functions (e.g., f1(x) and f2(x)) for candi-
date graph g ′.
Index structure: Our tree index I is exactly constructed
over those pre-computed data of candidate graphs g ′.
Specifically, in leaf nodes, each entry corresponds to a
candidate graph g ′ and stores its signatures, vertex/edge
counters, and linear functions.

On the other hand, in non-leaf nodes, each entry N z

aggregates the information (i.e., signatures, counters, and
functions) in its children. In particular, since label signa-
tures store information of label existence, we summarize
signatures by performing bit-OR operations over signatures
in children of node Nz .

Signature aggregation: Specifically, we merge two adaptive
label signatures, sig(vi) and sig(vj) of sizes m1 and m2

(w.o.l.g. m1 ≥ m2 ≥ 1), respectively, as follows. For each
group sig(m

′)(vj) in sig(vj) (1 ≤ m′ ≤ m2), we perform
bit-OR with one of groups in sig(vi) which minimizes the
Hamming distance (intuitively, this can reduce the conflict
rate and thus improve the pruning power). As a result, for
entry Nz in non-leaf nodes, we denote:

sig(Nz) = ∨∀vi∈Nz sig(vi);
sige(Nz) = ∨∀vi∈Nz sig

e(vi).

Counter aggregation: For numbers of vertices/edges, we
obtain:

cnt(Nz) = max∀vi∈Nz cnt(vi);
cnte(Nz) = max∀vi∈Nz cnte(vi).

Linear function aggregation: Finally, we illustrate how to
find a linear approximation over approximation line seg-
ments (for deriving score upper bounds) of multiple sub-
graphs under entry Nz .

Figure 8 shows 2 linear approximations, f ′
1(x) and

f ′′
1 (x), for function UB1(x) in 2 candidate graphs g ′ and
g′′, respectively. Without loss of generality, assume that
|E(g′′)| < |E(g′)|, and an index entry Nz contains both
candidate graphs g ′ and g′′. Our goal is to compute a
linear approximation function f1(x) for entry Nz , which
can tightly upper-bound line segments of subgraphs in N z .
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Fig. 8. Aggregating linear approximations in index I.

To achieve this goal, as depicted in Figure 8, we first take
the larger value between f ′

1(x) and f ′′
1 (x), for each x ∈

[1, |E(g′)|]. For example, when x = 1, we have f ′
1(1) >

f ′′
1 (1), and thus take the point (1, f ′

1(1)).
This way, we can get totally |E(g ′)| points in the 2D

space. Then, we can apply the approach in Section 4.2.2
to find optimal linear approximation function f1(Nz) over
these points. Once we obtain linear function f1(Nz), we
store its two coefficients a1(Nz) and b1(Nz) in entry Nz .
The case of function f2(·) is similar and thus omitted.
Index construction: We construct the index I in a bottom-
up manner. Specifically, starting from leaf nodes (on level
0), we iteratively build non-leaf nodes on Level L by
grouping nodes on Level (L−1). We perform the grouping
based on the criterion of minimizing the total summed
pairwise Hamming distance among label signatures.

In particular, let F be the average fanout of the tree
index. Thus, there are M0 = |V (G)|/F leaf nodes on
Level 0. In a general case, on Level (L − 1), there
are ML−1 = |V (G)|/FL nodes. To‘ construct Level L
from Level (L − 1), we first randomly select ML =
|V (G)|/FL+1 pivot nodes, and assign the remaining nodes
to their closest pivots in terms of Hamming distances on
their label signatures. This way, we can obtain ML groups.
After that, we randomly swap a pivot node with a non-pivot
node, and evaluate the summation of pairwise Hamming
distances in all ML groups. If the swapping leads to lower
Hamming distances (indicating lower conflict rate), we
accept the swapping. This process repeats until a maximum
number of swapping times (a system parameter) is reached.
To avoid local optimum, we execute the process above
multiple times with different sets of initial pivot nodes.
Pruning with index nodes: The pruning with index nodes
is similar to that with subgraphs. Instead of checking prun-
ing conditions for subgraphs, we can utilize label signatures
and linear approximation functions in index entries N z to
enable the pruning. That is, for adaptive label pruning,
we check the pruning conditions (given in Eq. (5)), by
performing bit-OR operations over signatures sig(q i) and
sig(Nz) (or signatures for edges).

Similarly, for quality score pruning, we estimate the
score upper bound for any subgraph under entry N z , using
functions f1(x) and f2(x) in entry Nz . If this upper
bound is not greater than αg , then we can safely prune
all subgraphs under entry Nz (i.e., saving the computation
cost of visiting children of this entry).

5.2 QA-gMatch Query Procedure

Figure 9 illustrates the pseudo code of the QA-
gMatch processing algorithm, namely procedure QA-

Procedure QA-gMatch Processing {
Input: an inconsistent probabilistic RDF graph G, a tree index I over G,

a query graph q, and a score threshold αg

Output: subgraphs g that are QA-gMatch answers
(1) pre-process q to obtain label signatures and numbers of vertices/edges
(2) initialize a candidate set cand(qi) for each vertex qi ∈ V (q)
(3) for each entry Nz in root(I)
(4) for each qi
(5) if Nz cannot be pruned by qi via adaptive label and quality score pruning
(6) add Nz to cand(qi)
(7) while cand(·) is not empty
(8) for each Nz ∈ ⋃∀i cand(qi)
(9) remove Nz from cand(qi)
(10) if Nz is a leaf node
(11) for each subgraph g′ under Nz

(12) apply adaptive label pruning and quality score pruning to g′ w.r.t., qi
(13) if g′ cannot be pruned
(14) add g′ to candnew(qi)
(15) else // intermediate node
(16) for each child node Nc under Nz

(17) apply adaptive label pruning and quality score pruning to Nc w.r.t., qi
(18) if Nc cannot be pruned
(19) add Nc to candnew(qi)
(20) if leaf level is not encountered, then cand(qi) = candnew(qi) for all qi
(21) refine candidate graphs g′ by joining candidates in candnew(qi) and return

the QA-gMatch answers
} Fig. 9. QA-gMatch over inconsistent probabilistic graphs.

gMatch Processing. We first start from the root, root(I),
of the index I, and prune those entries Nz in the root
that cannot contain candidate vertices matching with query
vertex qi. If an entry Nz cannot be pruned w.r.t. qi, then
we insert it into candidate set cand(qi) (lines 3-6).

Next, we will traverse the tree index in a breadth-first
manner (lines 7-20). For any leaf or non-leaf node N z w.r.t.
qi, we apply our proposed pruning methods to children
(subgraphs g ′ or child nodes Nc) of Nz (lines 12 and 17).
In the case where we cannot prune children, we will either
add subgraphs g ′ (if Nz is a leaf node) to final QA-gMatch
candidate set candnew(qi), or insert child nodes Nc into
cand(qi) for further filtering.

After the index traversal, we can obtain candidate sets,
candnew(qi), for each query vertex qi. Specifically, starting
from any two query points qi and qj that are connected
in the query graph q, we can join their corresponding
candidate sets, candnew(qi) and candnew(qj). That is, for
any two vertices vi ∈ candnew(qi) and vj ∈ candnew(qj),
if they are connected in graph G, then the pair (v i, vj) is in
the join result. Each time we add a new query vertex, q r,
from q that is connected to query vertices we have scanned
so far (e.g., vi and vj), and join its corresponding candidate
set, candnew(qr), with our previous (join) result. Finally,
we can obtain complete subgraphs g (i.e., final joining
result). After that, we will check the QA-gMatch condition
(as given in Definition 2.4) to return the actual QA-gMatch
answers (line 21).
Discussions on QA-gMatch over Probabilistic Graphs
with Vertex/Edge Label Uncertainties. Our proposed QA-
gMatch techniques can be easily extended to probabilistic
graphs with vertex/edge label uncertainties. In particular,
for probabilistic graphs with the edge label uncertainty,
we can re-define the quality score score(g) (as given in
Eq. (3)), by considering existence probabilities of edge
labels under possible worlds. That is, the appearance prob-
ability, Pr{pw(G)}, of each possible world (in Eq. (1)) is
given by multiplying existence probabilities of vertex/edge
labels.

Based on the variant of QA-gMatch problem that con-
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TABLE 2
The experimental settings.

Parameters Settings

αg 0.1, 0.2, 0.5, 0.8, 0.9
|V (q)| 2, 3, 5, 8, 10

N (= |V (G)|) 10K, 20K, 30K, 40K, 50K
kmax 1, 2, 3, 4
mmax 1, 2, 3, 4, 5

siders edge label uncertainty, we can encode uncertain
edge labels (rather than deterministic ones) into bit vectors
(i.e., label signatures for edges). Since the adaptive label
pruning method only checks the existence of vertex/edge
labels via signatures, our encoding with uncertain edge
labels can safely prune those false alarms (which do not
contain vertex/edge labels in the query graph). Moreover,
for the quality score pruning method, we can take into
account edge existence probabilities during the derivation
of score upper bound (i.e., Eq. (9)). Thus, our proposed
pruning methods (w.r.t. vertex/edge label existence pruning,
and pruning with score upper bounds by including edge
label existence probabilities) would not introduce false
dismissals. This way, our proposed QA-gMatch query pro-
cessing algorithm can be extended to probabilistic graphs
with both vertex and edge label uncertainties.

6 EXPERIMENTAL STUDY

In this section, we report the experimental results of our
proposed QA-gMatch processing approaches over both real
and synthetic RDF data. Specifically, for synthetic data, we
generate an RDF graph G by randomly producing edges
eij among vertices, such that each vertex vi has its degree
deg(vi) within the range [1, degmax(vi)]. Next, we generate
L possible labels l(vi) (∈ [0, 300) by default) for each
vertex vi, and one label l(eij) (∈ [0, 100) by default) for
each edge eij , where L ∈ [1, 3] by default. Then, we also
randomly assign existence probabilities l(vi).p ∈ (0, 1] to
vertex labels l(vi), and repair confidences eij .rp ∈ [0, 0.5]
to edges eij , where

∑
∀l(vi) l(vi).p = 1. We consider Uni-

form and Skew (with Zipf skewness 0.8) distributions for
vertex labels (denoted as U and S, respectively), and Uni-
form and Gaussian (with mean 50 and variance 20) for edge
labels (denoted as U and G, respectively). Thus, we obtain
4 types of RDF data sets: vUeU , vUeG, vSeU , and vSeG.
For real data, we used “directed CheckedFactExtractor” in
YAGO [25], which contains RDF triples associated with
confidences among facts (i.e., subjects/objects). For each
triple (or edge eij), we let its repair confidence eij .rp
be (1 − confidence of edge). The resulting graph contains
51, 875 vertices, and each vertex vi has two possible labels.
One is specified in RDF data, and the other one is randomly
selected from existing vertex labels in RDF data. We also
randomly select x% of edges in G as inconsistent edges
(assumed to violate a fact table).

To evaluate the QA-gMatch query performance, we
extract 50 query graphs q from probabilistic RDF graph
G, by starting with a random vertex vi ∈ V (G) and
randomly walking through edges in the graph to include
more (|V (q)| − 1) vertices. Labels of each vertex/edge
in query graphs q are also randomly chosen from the
corresponding vertex/edge in G.
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Fig. 10. Effectiveness evaluation between subgraph match-
ing over X-repaired probabilistic RDF graph and QA-gMatch.
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Fig. 11. QA-gMatch performance over YAGO, for different
quality score thresholds αg (QA-gMatch vs. Baseline).

We measure the QA-gMatch performance, in terms of the
CPU time and the number of I/Os, where the CPU time is
the time cost of filtering through the index, and the number
of I/Os is the number of page accesses for QA-gMatch
processing. Table 2 depicts our experimental settings, where
the numbers in bold font are default values. For each set of
our experiments, we will vary one parameter, while fixing
others to their default values. All experiments were run on
a Pentium IV 3.2GHz PC with 1G memory, and results are
the average of 50 queries.
Effectiveness evaluation: We first evaluate the effective-
ness of our proposed QA-gMatch approach, compared with
that of conducting subgraph matching query on a repaired
probabilistic RDF graph GR (i.e., simply deleting edges
that may contain inconsistencies) under X-repair semantics
[7]. We vary different percentages, x%, of inconsistent
edges from 2% to 10%, where αg = 0, |V (q)| = 10,
kmax = 3, and N = 30K . Figure 10 reports the recall
ratio of both methods on vUeU and vSeU (results of other
data sets are similar and omitted), where the recall ratio
is defined as the number of actual matching subgraphs
that are retrieved divided by the total number of actual
subgraph answers. In the figure, due to the graph repair
(via edge deletions), the subgraph matching on the repaired
graph can only achieve around 23% ∼ 77% recall ratio,
whereas QA-gMatch has 100% recall ratio (since QA-
gMatch considers all possible repairs rather than a single
repair), which confirms the effectiveness of our approach.
QA-gMatch performance vs. αg: Figures 11 and 12 eval-
uate the performance of our QA-gMatch approaches over
real (YAGO) and synthetic data, respectively, by varying
αg from 0.1 to 0.9, where other parameters are set to their
default values. Specifically, on YAGO data, we compare
our QA-gMatch approach with a baseline method which
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Fig. 12. Query performance vs. quality score threshold αg.
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Fig. 13. Query performance vs. query graph size |V (q)|.
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Fig. 14. Query performance vs. graph size N (= |V (G)|).
enumerates all subgraphs g, conducts the isomorphism
checking, calculates the quality score, score(g) (given in
Eq. (4)), and returns actual QA-gMatch answer. We can
see that, in Figure 11, the CPU time of our approach
outperforms the baseline method over YAGO, by about 7-8
orders of magnitude. To clearly illustrate the performance
trends of our approach, in subsequent experiments, we will
not report the results of the baseline method.

For both real and synthetic data, with larger αg , the
CPU time decreases. This is because, when the quality
score threshold αg increases, our quality score pruning
is expected to filter out more false alarms with scores
lower than αg . Thus, the cost of accessing few candidates
will incur lower CPU time. Moreover, with different αg

values, the number of I/Os remains low (i.e., 35-69), which
indicates the effectiveness of our pruning methods, and the
efficiency of QA-gMatch processing w.r.t. αg.
QA-gMatch performance vs. |V (q)|: Figure 13 shows
the effect of query graph size |V (q)| on the QA-gMatch
performance, where |V (q)| varies from 2 to 10, and other
parameters are set to their default values. For large |V (q)|,
since we need to retrieve vertex candidates for more query
nodes, the time and I/O costs are expected to increase. In
figures, the increasing curves are smooth, and CPU time
and I/O cost remain low (i.e., 0.1-2.3 ms and 35-80 I/Os).
QA-gMatch performance vs. N : Figure 14 demonstrates
the scalability of our QA-gMatch approaches with respect
to the graph size N (= |V (G)|), where N varies from
10K to 50K , and other parameters are by default. When N
increases, both CPU time and I/O cost smoothly increase.
This is reasonable, since more candidates are expected to
be examined in a larger data set. Similar to previous results,
the CPU time and I/O cost of QA-gMatch remain low,
which indicates the good scalability of our approach against
different sizes of the RDF data graph.

We tested the index construction time, cost model verifi-
cation, and data sets with parameters like kmax and mmax.
Please refer to Appendix B in supplementary materials.

7 RELATED WORK

Inconsistent databases: An inconsistent database contains
those data that violate some integrity constraints (e.g., key
constraints, functional dependencies, etc.), rules, or facts.

Previous works often considered inconsistencies in rela-
tional databases [16], [4] or probabilistic databases where
tuples are associated with probabilities [22]. In contrast,
our QA-gMatch problem involves inconsistent vertex labels
in probabilistic graphs (rather than tuples). Thus, previous
techniques cannot be directly used in our problem.

To resolve inconsistencies, there are 3 repair models [13]:
X-repair [7] that allows tuple deletions only, S-repair [4]
that performs both tuple insertions and deletions, and U-
repair [6], [28], [8] that considers tuple value modifications.
Our QA-gMatch repair model is different, in that we delete
graph edges (rather than tuples in relational tables).

Different from the repair that changes data in databases,
previous works also studied the consistent query answering
(CQA) [4], [22] over inconsistent data, which does not up-
date the database, but returns the aggregated query answers
over (minimal or all) repaired databases. The investigated
query types include relational operations (e.g., selection,
projection, and join) [4], [16], [28], [3], [5] and spatial
operations (e.g., range query, spatial join, and top-k) [22].
Specific pruning methods are proposed for different CQA
query types to reduce the search space. In contrast, our
QA-gMatch problem considers a different query type (i.e.,
subgraph matching) and different data model (i.e., graph
data rather than relational data), which thus cannot borrow
existing techniques for querying tuples or spatial objects.
RDF graph databases: RDF data can have different
formats, such as triple store, column store, property tables,
or graphs. In literature, Tran et al. [26] studied the keyword
search query over certain RDF graph, which retrieves
subgraphs that contain keywords with high ranking scores.
In contrast, we consider a different subgraph matching
query (instead of keyword search) over a probabilistic graph
model (rather than a certain one).

Different from certain general graphs [32], inconsis-
tent probabilistic RDF graph in our QA-gMatch problem
needs to consider inconsistent/probabilistic features, and
has much more possible labels (to encode) or incurs high
degrees in vertices, which are thus more challenging to
tackle. Moreover, there are some existing works [17], [15],
[21] that model probabilistic RDF data. However, they
either focused on data modeling for probabilistic RDF data
[15], or considered query types over consistent graphs,
other than the quality-aware subgraph matching query over
inconsistent probabilistic graphs.

Yuan et al. [31], [30] considered probabilistic consis-
tent graphs with vertex/edge uncertainties, and studied the
subgraph similarity search that obtains matching subgraphs
with a given query graph with high probabilities. Moustafa
et al. [23] proposed a model for probabilistic entity graphs
(PEGs), which incorporates identity, node attribute, and
edge existence uncertainties. This model also assumes that
possible worlds of PEGs are consistent, and the subgraph
pattern matching is conducted over such consistent PEGs
to find the matching subgraphs with high confidence.
In contrast, our QA-gMatch problem models the graph
by an inconsistent probabilistic graph (with vertex label
uncertainties and edge repair confidences), which allows
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inconsistent labels in possible worlds that violate rules/facts
(instead of consistent labels). Moreover, when we answer
QA-gMatch queries, we need to consider resolving incon-
sistencies, and retrieve subgraphs with high quality scores
via repairs (rather than graph existence probabilities). Thus,
QA-gMatch differs from prior works on consistent proba-
bilistic graphs, in terms of data models and query types.
Probabilistic databases: A probabilistic database [9] con-
sists of x-tuples, and each x-tuple contains one or multiple
mutually exclusive alternatives, associated with existence
probabilities. It can represent an exponential number of pos-
sible worlds, where each possible world is a materialized
instance of the database that can appear in the real world.
As a consequence, the query answering over probabilistic
databases is equivalent to issuing queries over all possible
worlds, and aggregating the returned query answers, which
is quite inefficient. Many existing works study various
queries such as top-k queries [20] to improve the query
efficiency by avoiding enumerating possible worlds. In con-
trast, our QA-gMatch query is conducted on a probabilistic
RDF graph (rather than probabilistic relational tables), and
thus prior techniques in probabilistic databases cannot be
directly applied. This inspires us to design specific pruning
techniques for inconsistent probabilistic RDF graphs.

8 CONCLUSIONS

In this paper, we study an important QA-gMatch problem,
which retrieves those consistently matching subgraphs from
inconsistent probabilistic data graphs with the guarantee of
high quality scores. To tackle the problem, we specifically
design effective pruning methods, adaptive label pruning
and quality score pruning, for reducing the search space.
Further, we build an effective index to facilitate the QA-
gMatch processing. We conducted extensive experiments to
verify the efficiency and effectiveness of our approaches.
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