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Step 2.The server combines proofs � [i ][j ](1 � i �
n; 1 � j � n) together.

8
>>>>><

>>>>>:

� 1 =
Q n

i =1

Q n
j =1 � [i ][j ]f � ( i;j )

1

� 2 =
Q n

i =1

Q n
j =1 � [i ][j ]f � ( i;j )

2

� 3 =
Q n

i =1

Q n
j =1 � [i ][j ]f � ( i;j )

3

res1 =
P n

i =1

P n
j =1 f � (i; j )res[i ][j ]1

res2 =
P n

i =1

P n
j =1 f � (i; j )res[i ][j ]2

(13)

In the end, the sever sends the proof � =
f � 1; � 2; � 3; res1; res2g to the client.

CheckProof (FMP ; pk1; pk2; res; � ) : The clien-
t runs this algorithm to check the validity of the
computation result.

Step 1.The client �rst computes auxiliary informa-
tion for each entry res[i ][j ]. Note that the
auxiliary information can be pre-computed
to speed up the veri�cation process, since it
is independent of matrices A and B .

8
>><

>>:

S[i ][j ]1;1 =
P m

k=1 h1(M 1; i; k )h1(M 2; j; k )
S[i ][j ]1;2 =

P m
k=1 h1(M 1; i; k )h2(M 2; j; k )

S[i ][j ]2;1 =
P m

k=1 h2(M 1; i; k )h1(M 2; j; k )
S[i ][j ]2;2 =

P m
k=1 h2(M 1; i; k )h2(M 2; j; k )

(14)
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>><

>>:

S1;1 =
P n

i =1

P n
j =1 f � (i; j )S[i ][j ]1;1

S1;2 =
P n

i =1

P n
j =1 f � (i; j )S[i ][j ]1;2

S2;1 =
P n

i =1

P n
j =1 f � (i; j )S[i ][j ]2;1

S2;2 =
P n

i =1

P n
j =1 f � (i; j )S[i ][j ]2;2

(15)

Step 2.Let ! =
P n

i =1

P n
j =1 f � (i; j )res[i ][j ]. If the

following three equations hold, the client ac-
cepts the computation result res. Otherwise,
the client rejects it.

8
<

:

e(� 1; g) = e(gS1;1
1 gS1;2

2 gres 1
3 ; pk2)

e(� 2; g) = e(gS2;1
1 gS2;2

2 gres 2
3 ; pk2)

e(� 3; g) = e(gres 1
1 gres 2

2 g!
3 ; pk1)

(16)

Correctness. We prove the correctness of the veri�-
cation algorithm in three steps.

i. If res1 is valid, then the equation e(� 1; g) =
e(gS1;1

1 gS1;2

2 gres 1
3 ; pk2) holds.

e(� 1; g)

= e(
nQ

i =1

nQ

j =1
� [i ][j ]f � ( i;j )

1 ; g)

= e(
nQ

i =1

nQ

j =1

mQ

k=1
� h1 (M 1 ;i;k ) f � ( i;j )

k;j ; g)

= e(
nQ

i =1

nQ

j =1
(gS[i ][ j ]1;1

1 gS[i ][ j ]1;2
2 gres [i ][ j ]1

3 )f � ( i;j ) ; pk2)

= e(gS1;1
1 gS1;2

2 gres 1
3 ; pk2)

ii. If res2 is valid, then the equation e(� 2; g) =
e(gS2;1

1 gS2;2
2 gres 2

3 ; pk2) holds.

e(� 2; g)

= e(
nQ

i =1

nQ

j =1
� [i ][j ]f � ( i;j )

2 ; g)

= e(
nQ

i =1

nQ

j =1

mQ

k=1
� h2 (M 1 ;i;k ) f � ( i;j )

k;j ; g)

= e(
nQ

i =1

nQ

j =1
(gS[i ][ j ]2;1

1 gS[i ][ j ]2;2
1 gres [i ][ j ]2

3 )f � ( i;j ) ; pk2)

= e(gS2;1
1 gS2;1

2 gres 2
3 ; pk2)

iii. If res is valid, then the equation e(� 3; g) =
e(gres 1

1 gres 2
2 g!

3 ; pk1) holds.
e(� 3; g)

= e(
nQ

i =1

nQ

j =1
� [i ][j ]f � ( i;j )

3 ; g)

= e(
nQ

i =1

nQ

j =1

mQ

k=1
� bk;j f � ( i;j )

i;k ; g)

= e(
nQ

i =1

nQ

j =1
(gres [i ][ j ]1

1 gres [i ][ j ]2
2 gres [i ][ j ]

3 )f � ( i;j ) ; pk1)

= e(gres 1
1 gres 2

2 g!
3 ; pk1)

Discussion : The veri�cation of matrix product is
an interactive protocol since the client needs to
send a challenge � after receiving the result res.
The server then provides a proof for res based on
the challenge � . Finally, the validity of res can be
inspected through equation (16). We stress that �
cannot be transferred to the server before receiving
res. Otherwise, given � , the server can easily forge
a result res

0
satisfying

P n
i =1

P n
j =1 f � (i; j )res

0
[i ][j ] =P n

i =1

P n
j =1 f � (i; j )res[i ][j ].

In the computation of inner product and matrix
product, we evaluate functions over the entire out-
sourced streams. It is worth noting that the function
can take any portion of the data streams as input.

Machine M 1 needsO(mn) modular exponentiation-
s, multiplications in G1, and O(mn) hash operations
to generate tags for an n � m matrix A. Similar to
the construction for group-by sum query, these tags
are computed only once. The storage cost for the tags
includes O(mn) elements in G1 at the server side. The
auxiliary information � i;j (1 � i � n)(1 � i � n) for
the generation of a proof at the server side include
O(n2) elements in G1 and O(n2) elements in Z �

q ,
which has the same storage complexity with the com-
putation result A � B . In other words, the proof gener-
ation does not introduce the extra storage overhead.
To compute a proof for A � B , the server performs
O(mn2) modular exponentiations, multiplications in
G1, O(mn2) modular additions, multiplications in Z �

q ,
O(mn) hash and O(n2) PRF operations. The proof �
consists of three elements in G1 and two elements
in Z �

q . Finally, the client performs six pairings, nine
modular exponentiations, six modular multiplications
in G1, O(n2) modular additions and multiplications in
Z �

q to verify the proof. Without outsourcing, M 1 (M 2)
has to store its matrix locally. The communication cost
for transmitting a matrix includes O(mn) elements
in Z �

q . Further more, the client compute A � B with
super-quadratic complexity.
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