

8

Step 2.The server combines proofs � [i][j](1 � i �
n; 1 � j � n) together.

8
>>>>><

>>>>>:

� 1 =
Q n

i =1

Q n
j =1 � [i][j]f � (i;j)

1

� 2 =
Q n

i =1

Q n
j =1 � [i][j]f � (i;j)

2

� 3 =
Q n

i =1

Q n
j =1 � [i][j]f � (i;j)

3

res1 =
P n

i =1

P n
j =1 f � (i; j)res[i][j]1

res2 =
P n

i =1

P n
j =1 f � (i; j)res[i][j]2

(13)

In the end, the sever sends the proof � =
f � 1; � 2; � 3; res1; res2g to the client.

CheckProof (FMP ; pk1; pk2; res; �) : The clien-
t runs this algorithm to check the validity of the
computation result.

Step 1.The client �rst computes auxiliary informa-
tion for each entry res[i][j]. Note that the
auxiliary information can be pre-computed
to speed up the veri�cation process, since it
is independent of matrices A and B .

8
>><

>>:

S[i][j]1;1 =
P m

k=1 h1(M 1; i; k)h1(M 2; j; k)
S[i][j]1;2 =

P m
k=1 h1(M 1; i; k)h2(M 2; j; k)

S[i][j]2;1 =
P m

k=1 h2(M 1; i; k)h1(M 2; j; k)
S[i][j]2;2 =

P m
k=1 h2(M 1; i; k)h2(M 2; j; k)

(14)
8
>><

>>:

S1;1 =
P n

i =1

P n
j =1 f � (i; j)S[i][j]1;1

S1;2 =
P n

i =1

P n
j =1 f � (i; j)S[i][j]1;2

S2;1 =
P n

i =1

P n
j =1 f � (i; j)S[i][j]2;1

S2;2 =
P n

i =1

P n
j =1 f � (i; j)S[i][j]2;2

(15)

Step 2.Let ! =
P n

i =1

P n
j =1 f � (i; j)res[i][j]. If the

following three equations hold, the client ac-
cepts the computation result res. Otherwise,
the client rejects it.

8
<

:

e(� 1; g) = e(gS1;1
1 gS1;2

2 gres 1
3 ; pk2)

e(� 2; g) = e(gS2;1
1 gS2;2

2 gres 2
3 ; pk2)

e(� 3; g) = e(gres 1
1 gres 2

2 g!
3 ; pk1)

(16)

Correctness. We prove the correctness of the veri�-
cation algorithm in three steps.

i. If res1 is valid, then the equation e(� 1; g) =
e(gS1;1

1 gS1;2

2 gres 1
3 ; pk2) holds.

e(� 1; g)

= e(
nQ

i =1

nQ

j =1
� [i][j]f � (i;j)

1 ; g)

= e(
nQ

i =1

nQ

j =1

mQ

k=1
� h1 (M 1 ;i;k) f � (i;j)

k;j ; g)

= e(
nQ

i =1

nQ

j =1
(gS[i][j]1;1

1 gS[i][j]1;2
2 gres [i][j]1

3)f � (i;j) ; pk2)

= e(gS1;1
1 gS1;2

2 gres 1
3 ; pk2)

ii. If res2 is valid, then the equation e(� 2; g) =
e(gS2;1

1 gS2;2
2 gres 2

3 ; pk2) holds.

e(� 2; g)

= e(
nQ

i =1

nQ

j =1
� [i][j]f � (i;j)

2 ; g)

= e(
nQ

i =1

nQ

j =1

mQ

k=1
� h2 (M 1 ;i;k) f � (i;j)

k;j ; g)

= e(
nQ

i =1

nQ

j =1
(gS[i][j]2;1

1 gS[i][j]2;2
1 gres [i][j]2

3)f � (i;j) ; pk2)

= e(gS2;1
1 gS2;1

2 gres 2
3 ; pk2)

iii. If res is valid, then the equation e(� 3; g) =
e(gres 1

1 gres 2
2 g!

3 ; pk1) holds.
e(� 3; g)

= e(
nQ

i =1

nQ

j =1
� [i][j]f � (i;j)

3 ; g)

= e(
nQ

i =1

nQ

j =1

mQ

k=1
� bk;j f � (i;j)

i;k ; g)

= e(
nQ

i =1

nQ

j =1
(gres [i][j]1

1 gres [i][j]2
2 gres [i][j]

3)f � (i;j) ; pk1)

= e(gres 1
1 gres 2

2 g!
3 ; pk1)

Discussion : The veri�cation of matrix product is
an interactive protocol since the client needs to
send a challenge � after receiving the result res.
The server then provides a proof for res based on
the challenge � . Finally, the validity of res can be
inspected through equation (16). We stress that �
cannot be transferred to the server before receiving
res. Otherwise, given � , the server can easily forge
a result res

0
satisfying

P n
i =1

P n
j =1 f � (i; j)res

0
[i][j] =P n

i =1

P n
j =1 f � (i; j)res[i][j].

In the computation of inner product and matrix
product, we evaluate functions over the entire out-
sourced streams. It is worth noting that the function
can take any portion of the data streams as input.

Machine M 1 needsO(mn) modular exponentiation-
s, multiplications in G1, and O(mn) hash operations
to generate tags for an n � m matrix A. Similar to
the construction for group-by sum query, these tags
are computed only once. The storage cost for the tags
includes O(mn) elements in G1 at the server side. The
auxiliary information � i;j (1 � i � n)(1 � i � n) for
the generation of a proof at the server side include
O(n2) elements in G1 and O(n2) elements in Z �

q ,
which has the same storage complexity with the com-
putation result A � B . In other words, the proof gener-
ation does not introduce the extra storage overhead.
To compute a proof for A � B , the server performs
O(mn2) modular exponentiations, multiplications in
G1, O(mn2) modular additions, multiplications in Z �

q ,
O(mn) hash and O(n2) PRF operations. The proof �
consists of three elements in G1 and two elements
in Z �

q . Finally, the client performs six pairings, nine
modular exponentiations, six modular multiplications
in G1, O(n2) modular additions and multiplications in
Z �

q to verify the proof. Without outsourcing, M 1 (M 2)
has to store its matrix locally. The communication cost
for transmitting a matrix includes O(mn) elements
in Z �

q . Further more, the client compute A � B with
super-quadratic complexity.

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),18 February 2016

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2016.2531665,
IEEE Transactions on Services Computing

14

Hui Li (M’10) received B.S. degree from
Fudan University in 1990, M.S. and Ph.D.
degrees from Xidian University in 1993 and
1998. In 2009, he was with Department of
ECE, University of Waterloo as a visiting
scholar. Since 2005, he has been a pro-
fessor in the school of Telecommunications
Engineering, Xidian University, China. His re-
search interests are in the areas of cryptog-
raphy, security of cloud computing,wireless
network security and information theory. He

served as TPC co-chair of ISPEC 2009 and IAS 2009, general co-
chair of E-Forensic 2010, ProvSec 2011 and ISC 2011. He is a
member of the IEEE.

