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Privacy-Preserving Outsourced Media Search

Li Weng, Laurent Amsaleg, and Teddy Furon

Abstract—This work proposes a privacy-protection framework for an important application called outsourced media search. This
scenario involves a data owner, a client, and an untrusted server, where the owner outsources a search service to the server. Due to
lack of trust, the privacy of the client and the owner should be protected. The framework relies on multimedia hashing and symmetric
encryption. It requires involved parties to participate in a privacy-enhancing protocol. Additional processing steps are carried out by the
owner and the client: (i) before outsourcing low-level media features to the server, the owner has to one-way hash them, and partially
encrypt each hash-value; (ii) the client completes the similarity search by re-ranking the most similar candidates received from the
server. One-way hashing and encryption add ambiguity to data and make it difficult for the server to infer contents from database
items and queries, so the privacy of both the owner and the client is enforced. The proposed framework realizes trade-offs among the
strength of privacy enforcement, the quality of search, and complexity, because the information loss can be tuned during hashing and
encryption. Extensive experiments demonstrate the effectiveness and the flexibility of the framework.

Index Terms—multimedia database, image hashing, indexing, content-based retrieval, data privacy, encryption.
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1 INTRODUCTION must remain capable of performing the search service and

I\/I ULTIMEDIA material is nowadays everywhere on inImeanwhile know little about the owner’s data and the client's

ternet. It is massively produced, distributed, and 74 Jnterests. This three-party scenario is more difficult than the

consumed by users around the globe. As a consequence,cﬂ’féve”tional two-party scenario. So far mos_t existing solutions
management of multimedia data, e.g., storage and sea¥Ny address the latter, and cannot be easily extended.

is typically outsourcedto third parties. Outsourcing offers |1 this work, the outsourced scenario is tackled by a novel
constant availability, fault tolerance, and gigantic processijVacy-preserving framework based sobust hashingand
power to both data owners and users. For example, it is needigfial encryption. In a nutshell, database items and queries
when similarity-based searches are performed on extrem@[§ represented by content-based hash values; the hash value
large-scale databases of multimedia content. In practice, ofit-cach database item is divided into two parts, one of which

sourcing has become a de facto standard for multimedfa@ncrypted. The unencrypted part is used by the server for

repositories, as exemplified by YouTube, Flickr, Picasa, etcPProximate indexing and search. The encrypted part is used

Outsourcing is however raising potential privacy problemg’:y the client for refined candidate ranking. Figure 1 shows a
flow chart of the proposal.

i) data owners might involuntarily confide sensitive infor- A ) )
) g y Robust hashing is the key element for protecting the privacy

mation to third parties; ii) third parties may profile users h d the cli c ional low-level f
according to their queries. Caring for privacy suggests th%\ftt e owner and the client. Conventional low-level features

user queries should not be fully known by a third partg\zmetlmesfehnat;]l_e the |nkferr!n% ofdcontent [1], while tlhe one-
server, especially when it is not trusted. For example, in/fY"€ss of hashing makes it hard to recover original content

remote diagnosis application, a patient sends medical ima Qn hash values. This concept has been_ successfully useq Ina
to a syndrome database for automatic matching. The priv -party protocol [2]. In order to cope with the new scenario,

concern is that the server should not see the query (whiEHOther element is i.ncorpt')raf[ed - par.tial encryption prgvents
reveals the patient’s health status) but still perform the sear e server from precisely “linking” queries and database items.

This work focuses on a particular application scenarﬁt the server, a high level of ambiguity is maintained because

calledoutsourced media search. In this scenario, a data owr%m':]amy Se_?rr]Ch cart;. only be p(;rform(;d h“S'”9 lljlngncryptedh
outsources the description of its multimedia data to an exter sh parts. That ambiguity must be such that similarity searc

server which provides search service to clients on behalf of ffgnains possible and meanm.gful. Our framework fqu|II§ this
equirement and allows flexible trade-offs among privacy,

owner. It is typically suited for cloud storage and computing. h it d lexity. T e the f K
Here, the untrusted server is a threat to the privacy of bo farch quaiity, anc: compiexity. 10 summarize, the framewor
s the following desirable properties:

the client and the owner. The challenge is that the ser\}éz? o .
« Scalability: The framework gracefully works with small
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Client [11], [12] or with multimedia data, such as image search [13].

E“Egsr;tec’ 5| candiate ranking Scale of their data collections remains small though. An
bits advantage of SPEED approaches is that they can extend to

multimedia hash more general threat models, in spite of more complexity.

object [ value The second category of solutions adopts an entirely dif-
unencrypted approximate ferent philosophy, namely Search with Reduced Reference

p—— hl:fsh > dej;t;";a:;mh (SRR) [2]. Instead of completely precluding privacy infringe-

ments, they try to make infringements computationally difficult

Server to achieve. One possible approach is to significantly raise the
ambiguity level of data collection. State-of-the-art solutions
adopting such a paradigm typically enforce th@nonymity
and/or thd-diversity properties [14]. In the case of multimedia

Fig. 1. A flow chart of the proposed solution.

complexity. data, this can be achieved by e.g. quantizing (or compressing)
« Generality: It is generic and versatile enough to fithe low-level descriptions of media items before creating the
different applications. database. This lossy process reduces the accuracy of informa-

In addition to the framework, we introduce the notion ofion stored in the database, increases collisions in indexing
“privacy gap’, a novel way to quantitatively measure privac9e”sg apd creates more tie§ in distanqe calpulations. In turn,
for retrieval applications. We also define the condition t8mMbiguity makes it quite tricky to precisely infer knowledge
achieve the gap, which states that the hash values at the seRRQut database items and queries.
must be much shorter than in the conventional scenario. ~ Various contributions have followed this path. A typical
We demonstrate the effectiveness of the proposed fran@@Proach to reduce the accuracy of informatioraisdomized
work with synthetic and real datasets containing milliongmPedding. This dimension reduction approach turns low-level
of items. One main lesson is learnt: it is possible to pefeatures into very compact signatures, sometimes called hash
form efficient privacy-preserving similarity search with high¥alues. A widely used method is the Johnson-Lindenstrauss (J-
dimensional data, which is the key for large-scale applicatiorls. €émbedding based on random projections [15], adopted by
The rest of the paper is organized as follows: Section ! €t al. [16], Voloshynovskiy et al. [17], and Fanti et al. [18].
is a brief literature review; Section 3 defines the applicatighnother popular method (including our implementation) is
scenario, the privacy requirements, and the threat mod#i€ locality-sensitive hashing (LSH) [19], which is typically a
Section 4 gives an overview of the proposed framework, whif¢lantized J-L embedding. A recently proposed method is the
Section 5 describes the system in detail; Section 6 sho@@cure embedding [20], which is a privacy-enhanced variant
experiment results and analysis; Section 7 is about secuffy LSH. There are also deterministic ways of generating
and privacy analysis; Section 8 compares our proposal witfgnatures. For example, Diephuis et al. use DCT sign bits [21]

some existing approaches; Section 9 concludes the work. @nd Weng et al. use wavelet sign bits [2]. _
Existing solutions, whether SPEED or SRR, typically as-

2 RELATED WORK sume a two-party (client, server) scenario. The three-par_ty
) ) o scenario has not been addressed yet. The goal of introducing
Privacy-preserving similarity search focuses on the secyf server is to significantly reduce the burden of the owner.
comparison problem: how can values be compared withoytis 5 challenge to both SPEED and SRR approaches. The
revealing them [3]. Existing solutions can roughly be d'V'dthaIIenge to SPEED is the complication in protocol design
into two categories. The first category includes solutions frogyq the potentially increased amount of computation and
the cryptography community where the problem is considergaraction. Adding an extra party to a secure protocol is a
as a special case of secure multi-party computation (SMC) [§}astic change and may completely alter previously established
These approaches belong to the area of Signal Processiggits. Especially in our case, the added party is an untrusted
in Encrypted Domain (SPEED) [4], [5]. They typically relyone, which further complicates the situation. Technically, it
on heavy cryptographic computations, such as homomorpligyht pe possible to extend a two-party SPEED solution to a
encryption [6], oblivious transfer [7], and garbled circuit [8]three-party one, but that would inevitably involve the owner
SPEED approaches are good at preserving privacy, but they @rene interaction, defeating the original goal.
very complicated in terms of computation an_d cpmmunication, SRR approaches can effectively liberate the owner, while
thus cannot be used in large-scale applications. They @ challenge is to control the amount of information (and
generally slow because: thus computation) at the server. In particular, we require that
« Homomorphic encryption works with very large numbethe server is not able to infer knowledge from the outsourced
representations (e.g. 1024 or 2048 bits) and uses maftabase. This restriction does not exist in previous SRR ap-
exponentiation operations; proaches, including ours [2]. This is addressed by hashing and
« It sometimes involves significant interactions betweegartial encryption. Previously we show that in the two-party
parties and therefore large payloads of communicatiorgcenario privacy can be achieved without sacrificing retrieval
« SPEED approaches do not offer any trade-off. performance, but at the expense of increased computation at
Nevertheless, some existing SPEED applications deal with tie server [2]. However, the same trade-off cannot be achieved
search of biometric data [9], such as face recognition [10h the three-party scenario, because the server has already used



IEEE Transactions on Knowledge and Data Engineering ( Volume: 28, Issue: 10, Oct. 1 2016 ), 07 July 2016

Server (untrusted) Protocol 1 Privacy-preserving outsourced media search
L - 4 Parties: Client (C), Server (S), and Owner (O).
partially encrypted Prerequisite: Client and Server register at Owner and share a

partal query hash. secure (encrypted) channel with Owner.
token, etc Protocol:

Step 3,4
P 1: C'— O : Client requests privacy-preserving search service
Client from Owner.
2. O — C : Owner sends a token and a decryption key to
= token, decryption key, etc (Step 2) _Cllent, along with the query format. All the information
is encrypted.
: C : Client obtains the token and other information by
decryption, which also authenticates Client’s identity.
4. C — S : Client sends the token and a partial query hash
to Server.
5. S : Server verifies the token and performs a search.
6: S — C : Server sends back the candidate list to Client,
all available information provided by the owner. Instead, a new along with distance information and encrypted partial hash
concept named “privacy gap” is introduced. values.
It is interesting to contrast our work with secure cloud7: C : Client decrypts partial hash values and find the best
search literature, e.g. [22]. Conventionally, secure cloud search match in the candidate list.
deals with text documents, for which similarity is measured
by keyword matching. Some existing solutions generate sig-
natures, which are different from hash values. The form of theEnforcing privacy of the clients refers to preclude the server
query is also different - trapdoor information is typically usedrom discovering clients’ interest. This concerns not only the
There is no tunable privacy. In addition, our two-stage seargeries of clients, but also the answers from the server. Since
structure is different from the conventional architecture.  queries and answers share high similarity, spying on one or
the other might breach the privacy of clients.

hash database
(initial preparation)

candidates,
partial hash,

Owner etc (Step 5,6)

\4

A
w

service request (Step 1)

Fig. 2. The application scenario. The steps correspond to
Protocol 1.

3 PRELIMINARY DEFINITIONS .Thgre are more privacy .threats thap the ones caused by
o . this simple query-answer client-server interaction. The server
3.1 The Application Scenario can further threaten the privacy of clients by profiling and

Outsourced media search involves three parties — a data oweerrelating queries. By observing the queries from one client,
a client, and a server. The owner possesses raw multimetia server might infer some knowledge, such as changes in its
material (images, videos, audio, ...), whose goal is to offéterest. It might also discover that several clients tend to pose
content-based search within its collection, possibly for contestiite similar queries, hence the server might identify groups
monetization or other profitable purposes. Due to limiteof users. This should be precluded as well.
resources, searching is outsourced to the third-party serve\We assume that all parties behave in a curious-but-honest
which typically offers better performance than what the own&ray. They strictly follow the protocol but they can learn from
could itself provide. After outsourcing, the client sends queri¢ise data in their possession for their own purposes.
to the server, which runs searches on behalf of the owner.
Figure 2 illustrates the application scenario.

The main difference between this scenario and the conveé:ﬁ- OVERVIEW
tional two-party scenario lies in the role of the server — it i§his section first gives a global overview of the proposed
not trusted, thus it can neither directly access the databagé/acy-preserving framework, then motivates the need for
nor analyze the database content; on the other hand, it sho@ldust hashing and encryption. A simple theoretical model is
be able to perform search and reduce the load of the ownéleveloped to help the understanding.

3.2 The Threat Model 4.1 Workflow

In general, privacy involves system properties such as unddie framework for enhancing the privacy of outsourced media
tectability, unlinkability, and communication content confidensearch is composed of the following five steps. The first two
tiality [23]. In our scenario, the owner and the client typicallypteps are initial preparation. The rest of the steps constitute
trust each other. In contrast, they do not trust the server, whitte search protocol, which is summarized in Protocol 1.
is thus the main adversary. Privacy is defined for the client andPreparation at Owner: The owner computes content de-
the data owner with respect to the untrusted server. scriptors from the media data that it owns. Descriptors are one-
Enforcing privacy of the data owner means preventing theay hashed intsignatures. Each signature is in part encrypted
server from knowing the raw multimedia material [1], or infeand in part left in-the-clear. Signatures are sent to the server.
some related knowledge, such as categories of the databadadexing at Server: The server indexes in a database the
contents (people, nature, indoor/outdoor, ..., see [24]). in-the-clear parts of the received signatures.
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Querying at Client: The client computes a content descripthe contents from the signatures, identifying groups of similar
tor from its own query media data. It is one-way hashed intosignatures might threaten privacy. To make this task more com-
signature. Some bits of that signature are sent to the servaplicated, way less accurate, and hence better shield privacy,
they form apartial query signature. The positions of these bitshe owner partially encrypts each signature before outsourcing
correspond to the in-the-clear bits of the signatures generathdm. A signature eventually outsourced to the server therefore
by the owner. contains an encrypted part as well as an in-the-clear part.

Searching at Server:The server runs a similarity search The in-the-clear parts of the signatures are used at the server
to identify the signatures that are most similar to the quemghen running similarity searches. For these signatures that are
Similarity is computed using the received partial query signost similar to the partial query signature, the encrypted parts
nature and the in-the-clear parts of database signatures. Owictheir signatures are sent back to the client, along with the
identified, the encrypted parts of the most similar signaturesrresponding distances computed at the server and some meta
are sent back to the client, along with the distance informatiolata. It is up to the client to re-rank the received candidate list
computed at the server. using the distances and the decrypted signatures.

Refining at Client: The client decrypts the received signa- The proposed framework forces the owner and the clients
tures, and completes the similarity search using the receiiedbe more proactive than in traditional settings that ignore
distances, the decrypted signatures, and the query signatupsivacy. Yet, that extra work is small compared to the overhead

of any SPEED-based privacy-preserving approach.

4.2 Rationale behind the Framework . L
! ! W 4.3 Theoretical Motivation

In traditional setups, e.g. Google Image, the server harve/itsmore formal motivation of our approach is presented

media contents to create its database, and also receives in]%qr% Assume that a database is composed aitatisticall
gueries from clients. In a context where privacy matters, tl}ﬁ : y

. . . . dependent items. An itenX is a string of L (binary)

is no longer adequate. With privacy requirements, the server : : . .

should have no direct access to the media and that acc pbols. A quenyQ is the result of some distortion applied
D dne particular itenX in the database. Denofé X ; Q) the

should solely be restricted to the owner and/or the Cllenrriutual information between the symbols of the query and the

Therefore, the low-level descriptions of media items MURem. This guantity theoretically measures how noisy is the

be computed gt the owner anq at t_he chgnt. But this is "Sistortion channeK — Q. It has been proved [32], [33], [34]
enough; any direct access to high-dimensional feature vectgggt no error-free search is possible if

(e.g. GIST [25], SIFT [26], ...) describing the media shoul
be restr_icted, as recovering the_ contents from such desgriptors (A def I(X;Q) — 1 logy N} <0 . 1)

is possible [1]. Content descriptors thus cannot be directly

outsourced to the server as this would potentially compromibtore precisely, whatever the search algorithm, the probabili-
privacy. In contrast, and in order to protect privacy, the ownéies of errors (false positives and false negatives) cannot vanish
and the client must transform content descriptors iob@- exponentially asL — +oo if A < 0. We regardA as a
way signaturesusing robust hashing, also called perceptuétheoretical quantity measuring how difficult is the search of
hashing [27], [28] or robust fingerprinting [29], [30]. the relevant itenXX in the database of siz¥'.

Robust hashing maps multimedia data to compact hash valThe key idea of our approach is to split the search into two
ues. Ideally, a hash value is a short string of equally probalsfgunds: a crude approximate search performed at the server
and independent bits. Robust hash algorithms typically involfellowed by a refinement of the returned list of candidates at
feature transformation, dimension reduction, and quantizatidhe client. The search at the server should remain efficient at
They enforce thene-wayproperty that it is computationally scale: it is therefore unfeasible to rely on SPEED solutions. In
difficult to infer the original content from a hash valuecontrast, simple values (binary strings, ints, floats) should be
Hashing is a quantization functidn(-) which strengthens the used at the server, facilitating comparisons, distance calcula-
confidentiality of the data: quantization loss hinders the perfd@ns, etc. Enforcing privacy, however, suggests that the search
reconstruction of a vectad from its signaturex. Moreover, at the server should not be too accurate. Privacy is possible
function h(-) may also be key-dependent. Furon et al. [33hen the items relevant to a query are “hidden” in a long list
propose an embedding where an adversary cannot estinefteandidates. Only the client has the ability to re-rank the
h(-) after observing a limited number of paitd;, h(d;)). candidate list, allowing the truly similar elements to emerge.

On the one hand, with robust hashing, it is impossible @ur aim is thus to artificially lower the search quality at the
reconstruct a piece of content from its signature. On the ottg&rver but do our best at the refinement stage at the client, i.e.,
hand, similarity searches can reliably use the signatures ath@ server should operate at a low&rthan the client.
surrogate for content descriptors because robust hashing resulhere are three ways to enforce a decreased the server:
in similar signatures from similar contents. Searching with « Increase N: The owner inserts dummy items (a.k.a.
such surrogates is called privacy amplification [17] and has distractors) in the database. We then need a mechanism
been utilized to enhance privacy [2], [18]. to signal dummy items in the list returned to the client.

Despite hashing, the server can infer knowledge of thee Decreasel(X;@): The client artificially decreases the
database by e.g. clustering the signatures received from the mutual information by sending a noisy que€y. The
owner. Even though the server cannot know the nature of Markov chainX — Q — Q guarantees thalt(X;Q) <
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I(X;@Q). The client uses the true que@ to yield a hashed or quantized into a compact signatare- h(d). A

reliable refinement. signature is assumed to be a string lbfequally probable
« Decreasel: This amounts to lowering the length at and independent symbols. In the sequel we denotexby
the server while the client uses the full length. the signature of the-th multimedia item. The owner then

The first option increases the database size, thus is not fayiecesses all its hashed signatures and splits &adhto a
able unless the database is too small. The other two optigh#lic partx,; of L, bits and a secret paw,; of length
are similar in the sense that they both add noise, while the = L — L,. This latter bit string is encrypted with the
third option essentially adds quantization noise. Our propog#iner's secret keys;, = enc(x;;). The data eventually
instantiates the third option by means of partial encryptiofutsourced to the server is the set of pdiss x,, i }1\;.
because it is easy to implement.

Next, we estimate the theoretical hash performance af(oezﬁ
privacy enhancement, following a similar line as in [35]. When’
the Hamming distance is used for hash comparison,/tbit ~ The server receives a collection of outsourced signatures from
hash values are judged as relevant if their distafidg less the owner. As the role of the server is to efficiently perform
than or equal to a threshold(0 < ¢t < n). The performance similarity searches, it has to index these signatures. The server
of a hash algorithm can be characterized by the true positie0f course free to use whatever high-dimensional indexing
rate P, and the false positive ratg;,: gchemg. Indexing schemes based on the traditional inverted

« Py, = Probability {d < t| The two images are reIevant};"StS using the Bag-of-Words model can be used [36], as

. Py, = Probability{d < ¢| The two images are irrelevant}, Well as other schemes such as LSH [19] or the PQ-Code

Assuming then bits are independent and each bit is a binar"jlfpmach [37]' The server mlgh_t also use a 5|mp_|e_ exhaustive
o . nd sequential search process if the scale is sufficiently small.
classifier with average performande.,,ps,}. the perfor-

) The server inserts in its index the parts; of all the
mance of a general scheme can be formulated as: . : . B
signaturess; being metadata linked to theth item.

Indexing at Server

Py, = f(pp,n,t) (2) In our implementation, we consider linear scan and hash
Pry = f(ppprnit) A3) table look-up. The Iatter. is suitable for _Iargg—scale cases. It
works as follows. Thed, bits ofx,, ; are divided into: groups
where of smaller sub-strings, each sub-string being of lerfgtthere
" /n we assume/ = L,/n. Then we creater hash tables each
f(p,n,t) = (k) P - (1=p)"". (4 having2’ buckets. Each table acts as an inverted index for one
k=n—t

particular group. The buckets of one hash table thus contain

In our scenario, the decision making is a two-stage proces¢he identifiers of the signatures they are associated with.
first by the server and then by the client. Therefore, the overall
hash performance (at the client) is defined as: 5.3 Querying at Client
Pipctient = Pipserver - Pip ®) At query time, a client first computes the content descrigtor
Prpclient = Prpserver - Prp (6) from its query media, and then one-way hashes this descriptor

into a signaturey = h(q), which is split into two parts;,, and

ys in the same way as the owner did for database signatures.

Pipserver = f(pip,n/,t) (7) The stringy, forms the querying data sent to the server.

pr,ser'uer = f(pfp7 n/v tl) . (8)

The privacy-preserving protocol essentially influences the 53}:5"-4 Searching at Server

tem performance by Eqn. (5) to (8). In particular, privacy i$he server receives from the cliep} which is then used to
achieved by setting’ << n. The performance also dependgrobe the index in search for similar contents. Regardless of
on the indexing strategy at the server: for linear s¢am; n’; the actual indexing and retrieval method, the server eventually

where

for hash table look-up) < ¢ < n'. builds a list of candidate signatures from the database that
have been found similar enough to the query, assuming that
5 ARCHITECTURE OF THE SYSTEM meaningful similarity computations are possible betwggn

and {x;,; }L ;.
In our implementation, a temporary candidate li&t is
) first built according to the particular indexing scheme. For
5.1 Preparation at Owner linear scan, all database items arefin For hash table look-
The content owner has to perform a series of actions befotg, the queryy, is split into n sub-strings, each probing
hand, off-line, in order to prepare a dataset that will eventuallige relevant hash table; the identifiers stored in the matching
be outsourced to the server. buckets are put intd;. Some variants of this indexing scheme
First, the owner has to compute content descriptors from thee more than one matching bucket per hash table: multi-probe
media data. Such descriptors are typically high-dimensioregdproaches determine the besp buckets to probe for each
vectors. The descriptionl of one multimedia item is then table. Quality of results improve at the cost of extra processing.

This section details the workflow outlined above.
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The list £; is then parsed to retrieve the signatureS.6.2 Lengths of L, and L,
{xp,i}iec, and compute Hamming distances: Recall that the one-way hashed description is a signatwk
9) L symbols. The signature is subsequently divided taf@and

x, whose respective lengths afg and L, = L — L,,.

The final candidate list is composed of the indices ifi; Length L, is a key element setting the trade-off between
whose Hamming distance is below a threshold. Another optipfivacy and utility at the server. Compared with a large
is to re-rank items inC; according to their distanc®;.,...; value for L, (many bits are in-the-clear) enables the server to
and include in the indices of the topy smallest distances. In determine a high-quality list of candidates, which is likely to
the end, the server sends back to the client the list of tripleisntain most of the true positives and few false positives. But
{i, Dserver,is Si ticc- in this case privacy might be endangered: the server may easily

Since the server evaluates the similarity of the signaturgger knowledge by clustering the signatures in its database. In
only with the restricted informatiorx, ;, the candidate list contrast, a small value fak, might severely alter the quality
might contain a number of false positives. It might also fail tef the candidate list — a lot of false positives appearCin
include true positives, because e.g. the indexing method missegse negatives are also likely because true neighbors might be
relevant signatures due to the harshly estimated similarity. missed more easily. In this case, however, privacy is preserved

as higher-level information is more complicated to infer.

5.5 Refining at Client The trade-off between the quality of the candidate list

The client receives the list of candidates from the server. Quilt at the server and the privacy threats is central to our
with the secret key shared by the owner. The client has né@fms of server's and client’s retrieval performance.
access to some extra information about the hash values of ?83 Candidate List Construction

candidate list, allowing it to refine the results from the server: ) ) T . .
The size of the candidate list is also a factor impacting the

Detienti = Dserveri +du(Xs,i,Ys) (10) quality of search. Obviously, regardless bf, if the server
= dy(xi,y). (11) returns to the client all the items in the database, then quality

. , . . . . . is maximum. But this is not practical. It is costly to send so
This refinement is equivalent to using the full information Orfnuch information over the communication channels. and it

the signatures. Note that the client never knows the Compl?ﬁ%gers heavy computations at the client
hashxihbecause the server Oﬂly sgnds b@%:vem'h hort i The candidate listC must therefore be short enough to
.It IS then easy to run an exhaustive search on ,t, €s 'ort Rimain efficient but long enough to include useful candidates
Itis likely to filter out a large amount of false positives in the,,4 maintain client privacy. Because hash values are compact,
original list £; the false negatives cannot be recovered. o 1 afford much longer candidate lists than in conven-
tional systems. The minimum length depends on the privacy

Dserver,i = dH (Xp,ia yp)'

5.6 Discussion requirement. This is further discussed in Section 7.2. As said
We discuss here several key details that matter for designisaylier, the server can either fix a threshold or return the
the complete system. top k£ similar elements. We face here the traditional division
between bounding the similarity or bounding the number of
5.6.1 Client-Owner Relationships the candidates. In this paper we explore the latter option.

Our architecture assumes some cooperation between the client
and the owner. The client adopts not only the same medi$-4 User Management and Quality of Service
description scheme but also the same encryption schemeThe proposed protocol naturally supports multiple clients
the owner. In a preliminary protocol, the back office of théusers). Since the privacy threat is the server, only one en-
owner registers trusted clients and shares the decryption keyption key is used for the hash database. Legitimate clients
via a secure communication channel. can obtain the decryption key after entity authentication. In
Note that we generally do not consider owner data privagyactice, the token based service access can be achieved by
at the client, because in many retrieval applications the cliemg. Kerberos [39]. The owner in fact acts as the authentication
is able to access the owner’s data. The search procedure is gaster and the ticket-granting server.
a step to ease the retrieval. Sending bdgk, ., is mainly In order to improve quality of service (Qo0S), it is possi-
for efficiency. Since hash values reveal a very small amountlie to encrypt the hash database using multiple keys. Each
information about the data, our solution also has the potenti@y corresponds to a different retrieval/privacy trade-off. The
to work with special cases where the owner data is totalbyvner can either provide several copies of partially encrypted
confidential. If a higher privacy level is required, the softwarkash databases with different encryption levels, or provide one
for the refinement procedure can be enhanced by the ownepy of partially encrypted hash database with different parts
to further reduce information leak. The goal is to prevent thencrypted by different keys. The client can request a particular
client from accessing the hash values during the refineme@bS level when asking for a token. The QoS level is flagged in
This can be achieved by code obfuscation [38] and/or trustdek token and the corresponding key(s) is inserted. The server
computing techniques [39]. In addition, hash values can beay search in different databases according to the QoS level.
periodically updated to alleviate the problem. This flexibility facilitates various business models.



IEEE Transactions on Knowledge and Data Engineering ( Volume: 28, Issue: 10, Oct. 1 2016 ), 07 July 2016

6 EXPERIMENTS 6.3 Datasets
This section gives the experimental results. Two families @f3.1 Synthetic Data

experiments are proposed here. We first present experlmewé first randomly generatd), 000 vectors of512 dimensions

using synthetic data in order to achieve two goals: (i) tho[l'sing i.i.d Gaussian variables. We then hash each vector and

oughly discuss the ability of the framework to enforce PrivaCy aate 32-pit signatures, i.d, — 32. These hash values

of the owner and the client, (ii) introduce the archetypal Sha%?e used as seeds to create the synthetic dataset. To this
of the precision/recall graphs when using the system. We thg

| dataset ising 5 million i d show t Hd, 100 modified copies of each seed are created, and the
use a real dalaset comprising > mitiion images and show rPé‘gulting one million signatures form the data collection of the
privacy can be enforced in reality. We start by describing ho

. - Ywner. Modified copies of seeds are generated by randomly
§|gnatures are created at the owner and how ambiguity Canrrtfgdifying each 32-bit hash value up 56%. The owner then
imposed at the server. partially encrypts these one million signatures and outsources
. . them to the server. To evaluate the quality/privacy trade-off, a
6.1 Generating Signatures ground truth is created by randomly picking000 seeds and
The LSH framework is used in the experiments for generatingcording the identifiers of the correspondigd00 x 100

the signatures from high-dimensional image descriptors. It im#dified signatures. At search time, precision and recall are
well known embedding technique. Specifically, our implemeromputed on the basis of this ground truth, i.e., how many
tation is based on Charikar's algorithm [40]. The embeddingodified signatures can be found when the client queries the

from R? — {0,1}* is computed as follows: thg-th bit of collection with one seed. Two comments are in order. First, the

x = h(d) is given by seeds are not in the data collection used at search time. Second,
_ the ground truth is not constructed on the basis of distance
s — {1 if d” ;>0 (12) computation, but on the basis of relevance — which signatures
! 0 ifd-r;<0’ are derived from which seeds. Therefol®; construction,

it is possible for the distance between one seed and one

8f its modified signatures to be large since half of the bits

can be changed. It is therefore unlikely that a recalllof
0(dy,ds) ~ %.d}-](h(dl),h(dg)). (13) can be reached at the server when §earching it; dataset for

signatures that are most similar to queries. Observing the recall

This generates a binary signature of lengtlior each media when no encryption is applied thus gives the baseline for the

item at the owner. Then, each signature is partially encryptggkrformance when experimenting with this dataset.

L,, bits remaining in-the-clear anfl; bits being encrypted.

We apply LSH to both synthetic and real data in ous.3.2 Real Data

experiments. In particular, LSH is used together with featuwe also created a second dataset with real images fieaa

segmentation for real data, which means the feature Veaordh}_licate image searcbcenario. This real dataset is built upon

first divided into segments and each segment is hashed S&RE"\alidation set of ILSVRC'12 which consists &b. 000

rately. This not only improves the discrimination performance,gginal images. We expand this image collection by creating

but also enhances privacy protection, as shown in Section 7 . ; -
a series of near-duplicates. Specifically, we apply to each

) o image15 different families of incidental distortion, each with
6.2 Imposing Database Ambiguity 7 levels of strength, as detailed in [2, Table Ill]. Overall, this
The owner sends the servar signatures, each made &f, results in 5.3 million images. These images are described using
in-the-clear bits and. encrypted bits. Intuitively, the privacy 512-dimensional GIST feature vectors [25]. These vectors are
of the owner is enforced wheh,, < [log,(V)]. In this case, reduced to256 dimensions using PCA in order to increase
the number of bits to encode the clear part of the signaturerishustness. The owner then hashes the reduced feature vectors.
small enough témpose ambiguityt the server when creatingin particular, feature segmentation is used — each feature vector
the database, i.e., it is guaranteed that several signatygesivided into8 segments; each segment is hashed to produce
have identicalL, bits. In contrast, wherl., > [log,(N)], 16 bits. This results inl28-bit signatures (I= 128), which
there might be enough bits to uniquely identify each of there partially encrypted before being outsourced to the server.
N signatures by only observing thex,;}iL, parts. It is  The following experiments mainly focus on the encryption
trivial for the owner to decide the appropriate value fof parameters. To evaluate the quality/privacy trade-off, a ground
given N, and the consequences of the imposed ambiguityth is created by randomly pickirig 000 original images and
at the server are immediate and follow the well-knolug, recording the identifiers of the corresponding near-duplicates.
rule. For example, ifN' = 10,000,000 then any value for The GIST vectors of thesg 000 images are computed and
L, greater or equal t@4 might raise the risk to give the hashed by the client in the same way as the owner, and
server a fair amount of unique,’s, while values below23 partially used as queries. At search time, precision and recall
create confusion. Of course, it is statistically possible thate computed on the basis of this ground truth, i.e., how

some ambiguity among the signatures remains at the seriginy near-duplicates can be found when the client queries
if the owner leaves in-the-clear more théling,(N)] bits, as

observed in the experiments. 1. http://www.image-net.org/challenges/LSVRC/2012/

wherer; € R? is a random Gaussian vector. The Hammin
distance between two signatures estimates their angle:
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Fig. 3. Retrieval performance vs. encryption (linear scan).  Fig. 4. Precision vs. encryption (linear scan). Encryption

There is a “privacy gap” between “client” and “server”. The  gecreases precision; “client” always outperforms “server”.
square marks correspond to top 200 ranks, see Fig. 4-5.

Recall for different levels of encryption -- Synthetic data
the collection with one original image. This dataset is denoted 0.4 :
as GIST5M.

0.35 | : i

6.3.3 Performance Metrics 03 |-

Most experiments produce precision/recall (P-R) curves to o.2s |
show the quality/privacy trade-off at the server as well as at the

client. The P-R performance at the server is directly related ®© 02

the number of bits that are left in the clear by the owner. The o.15| L,=32, server & client ,
fewer bits, the worse performance at the server. In contrast, | LPL="2=34’52%3$ —_ |
the client has full information once signatures are decrypted, Ltgjg‘?g;';sgﬁ

making re-ranking on distances profitable. Performance at the 0.05 - L';&?;?'sglrisgﬁ —— ]
client is hence typically much better. All the graphs for the . 5 5
experiments therefore show pairs of P-R curves, one plotting 0 50 100 150 200
the performance at the server, the other at the client. The best rank

answers at the server and at the client are compared \I\fl_llg 5. Recall vs. encryption (linear scan). Encryption

the ground truth. The P-R curves are plotted by varying trEleecreases recall; “client” always outperforms “server”
number of answers from to 5,000 with a step of5. They ’ Y P '

are best viewed in color.

Normalized distribution of relevant candidates -- Synthetic data

6.4 Experiments with Synthetic Data 0035 ‘|EP=32 J—
()

We conducted a first series of experiments using the synthetic 0.03 » » »Lp=1g -
8 —

dataset. Recall that the signatures outsourced to the server are
L = 32 bits long and that the database contaln800, 000
items. We start with the server performing a linear scan of t
data collection. Hash table look-up is discussed later.

0.02

0.015
6.4.1 Search with Linear Scan

These first experiments aim at understanding the impatt, of

and L. The resulting P-R curves are shown in Fig. 3. We first  0.005
set L, to 32. In this case there is no encryption, allowing to
observe baseline results, which are identical at the server and 0 50 100 150 200
at the client. Note that there are enough bits to fully encode rank

one million signatures. We gradually decredsgto 24, 16, ] o )

and 8. In these cases, the reduced numbers of in-the-clear bits 6. Normalized distribution of candidates among top
start to create ambiguity at the server. With = 8 (75% of ranks at the server (linear scan). Encryption tends to
the signature is encrypted), the server is highly confused figften the distribution.

estimated protgbility

0.01
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many signatures look identical, which in turn creates numerous
distance collisions between items. The situation improves with 4
L, = 16, yet quite some ambiguity exists. With, = 24,

Performance for different levels of encryption -- Synthetic data

L‘p:32, server & client

0.9 | L,=24, client
enough bits are in theory left in the clear to encode one L34, server —x—
a1 . . . . . . . O P77
million signatures, but ambiguity is still observed in practice. Lo 16, server
0.7 =3, B

For all curves but the one whete, = 32 (no encryption),
the gap between a pair of P-R curves shows the differenge 06 -
in performance between the server (low performance) and tBe o5 |-
client (high performance). We call it the “privacy gap”. g o4

Thanks to much more accurate distance information, the
client always performs better than the server for a given
precision or recall. Due to its poor retrieval performance,
the server cannot properly identify items that are relevant to
the query, thus qllent privacy is protected. We observe that O 0= =0T ™0 o2 o025 03 035 02 o045
the privacy gap increases with the encryption level. When recall
L, = 16, it is interesting that the server’s curve is no longer
monotonic, contradicting the normal behavior of a retrievdlig. 7. Retrieval performance vs. encryption level (hash
system. Typically the precision should decrease with tliable look-up). The privacy gap still exists.
number of results, because relevant items tend to concentrate
in the front of the candidate list. While in this case, more )
relevant items are in the middle of the list due to the ambiguitg; OF 1 hash table(s) corresponding g, set t024, 16, or 8.
so the precision slightly improves as the number of resu hich bits should be encrypted dc_)es not matter much as hash
increases (see Fig. 4). This probably makes no sense in anoiqdyes are almost equiprobable bits, as demonstrated in [2].
retrieval scenario, but it is indeed what we expect to achieve —Figure 7 shows the P-R curves when using hash table look-
to confuse the server. Wheh, = 8, the precision at the serverUp- The privacy gap still exists with similar quality/privacy
is close to0 while the client performs quite well, thanks totrade-offs. Therefore, the privacy protection mechanism is
its profitable re-ranking. However, note that the performan@yjependent of the server’s internal retrieval method. However,
of the client also degrades with the strength of the encryptidiote that the recall is lower compared with the linear scan case,
The trade-off between the enforcement of privacy (encryptioA$ hash-based indexing might fail to identify correct answers
and the quality of retrieval is well demonstrated here. due to bucket allocation.

More detailed results are shown in Fig. 4-5, where the
precision and the recall are individually plotted 200 best g5 Experiments with Real Data

ranked results (instead &f 000). The corresponding range is ) )
also marked in Fig. 3 to facilitate correlation. They show thd/é conducted a second series of experiments to observe the

the proposed mechanism can effectively reduce both precisfhavior of the framework when using signatures generated
and recall for the server. In general, the privacy gap decreali®n real images. Recall that the signatures outsourced to the

with the rank. Figure 6 plots the estimated probability that SETVer areL = 128 bits long and that the database contains

relevant candidate appears at a particular rank, knowing thi¢ Million items. We start with the server running a linear

rank is below200. With no or little encryption, i.e. largé,, scan. Hash table look-up is discussed later.

correct answers are more likely to appear at top ranks. Thus S

the plots have a high peak for top ranks. In contrast, wh&w-1 Search with Linear Scan

encryption is strong (/.= 8), correct answers are uniformly The first experiment with real data shows the performance
distributed within the firs00 ranks. In this case, the servewhen L, = 128,40, 32,24, 16. The server is set to return the
is confused. It has small probability to identify the corrediop0.5% items to the client. There is no encryption when=

Lp=8, server —e—

0.3 -
0.2 |
0.1 |

answers, showing that privacy is enforced. 128, and this gives the baseline performance. Due to the size
. of the database, severe ambiguity at the servgueranteed
6.4.2 Search with Hash Table Look-up whenL, = 16. In practice, ambiguity is also likely for higher

We ran similar experiments when the server uses a hash-bagades. The resulting pairs of P-R curves are shown in Fig. 8,
mechanism for indexing, which accelerates retrieval comparetiere the privacy gaps exist too. They are directly linked to
with the linear scan used above. Hash-based indexing procet@svalue ofL,. The results here are consistent with the ones
as follows: the server splits thé, bits of the outsourced in the synthetic data experiments, which proves the versatility
signatures in groups éf= 8 bits. Each group is used to build aof the privacy enforcement framework. Compared with Fig. 3,
hash table. At search time, the server splits the query signattire results in Fig. 8 are better for both the server and the client,
in the same way, and build8, by merging the candidates inbecause largeL.,, values are used; for exampt4 clear bits
the matching bucket(s) of the hash table(s). Then it parses #re sufficient to encode tt5e3 million signatures. Note that the
list and returns all candidates to the client, ile= L;. recall is much improved and gets close to one. That is because
When signatures are not encrypted, (£ 32), the server near-duplicates tend to be close to their original counterpart
uses4 hash tables. With encryption, the server uses éqly after robust hashing.
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Fig. 8. Comparison of P-R curves with real data (linear Fig. 10. P-R curves with only top p, candidates returned
scan, L, bits unencrypted). The privacy gaps are consis- to “client” (3 hash tables, L, = 24). A trade-off between
tent with the synthetic data experiment. retrieval performance and communication cost.

1 Performance for different levels of encryption -- GISTSM candidates inﬁt. Figure 9 shows the performance when

" ! L = L, i.e., all candidates found in the matching buckets
09 i are returned to the client. Previous observations still hold, but
08 1 the gaps look smaller than in Fig. 8. This implies a trade-
07 T S oo off between privacy and indexing efficiency. Nevertheless,
_ 06 P15 ST 240, clont returning many candidates to the client might cause too much
2 os s et overhead (network, processing, ...). We therefore measured
i3] : Pan . . . .
2 o '-f:fzzfglgﬁ; the performance by varying the size of the list Figure 10
Lp=24, server —x— illustrates the impact of sending the tgpp candidates from
0.3 p=16, client .
L,216, server L;, where p, is set to 100%, 10%, 5%, 1%, and 0.5%.
0.2 : ' ' 3 This figure corresponds td, = 24. Whenp, = 5%, the
0.1 4 server only sends abo@t000 candidates to the client, but the
0 ‘ ‘ i ‘ \ \ resulting performance is close to the original one, for which
06 0.7

1 1
0 01 02 03 04 05 08 0.9 1

recall about63,000 candidates are sent. Figure 11 shows a similar

experiment, but withl.,, = 16. There are fewer hash tables and
Fig. 9. P-R curves with real data (hash table look-up, 8 thus fewer candidates compared with the previous case. The
bits per table, L, bits unencrypted). The gaps are smaller ~Performance difference at the client between different settings
than in Fig. 8 — a trade-off between privacy and indexing. Pecomes more noticeable. Selecting fop now only returns
less thar5% of relevant answers, which is worse than in the
previous case. Overall, this shows another trade-off between
6.5.2 Search with Hash Table Look-up retrieval performance and communication cost.
We ran similar experiments when the server uses a hash-
based mechanism for indexing. Here again fhebits of the 7 SECURITY AND PRIVACY ANALYSIS

outsourced signatures are split into groups8obits. When |, security and privacy provided by our proposal are compu-

Ly, =128, the server uses6 hash tables. That number dropsayignal. without full encryption, the hash values do leak some
to 5 when L, = 40, and goes down t@ when L, = 16.

! : information. However, our framework can be acceptable, as
Figure 9 plotg the P-R curves whdn, varies. As befor'e, the shown in the following.
performance is controlled by the strength of encryption.

One important remark must be made. With hash-based ) .
indexing, the value off,, directly influences the number of /-1 ~Security analysis
candidates in;, hence the contents af that is returned to Since standard encryption is used, predicting the encrypted
the client. Hash-based indexing creagfsbuckets per hash hash bits is computationally difficult for the server. On the
table, so each bucket contains roughl$ x 106/2% ~ 21,000 other hand, the unencrypted hash bits might reveal some
items. WhenL, = 16, two hash tables are created at thenformation about the original content. In the following, we
server for indexing. Probing them at search time createsamalyze the security threat from a reconstruction point of view.
list £, of about42,000 candidates. Wherl,, = 128, there We assume that the server's goal is to reconstruct feature
are 16 hash tables to probe, which results in ab886,000 vectors from their hash values. Given a feature veg¢t@nd
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Fig. 11. P-R curves with only top p, candidates returned
to “client” (2 hash tables, L, = 16). A trade-off between
retrieval performance and communication cost.

Fig. 12. Correlation coefficient between original and re-
constructed vectors.

denoted byP’. The high entropy ofP’ can typically thwart
brute-force attacks. It is more feasible for the server to consider
i known plaintext attacks or chosen plaintext attacks, which
h = sign(P- f) . (14) require feature-hash pairs. According to [41], if hash values
Assumingh € {1,—1}", when the hash length is not large@re not binarized, the number of pairs required to find But
than the feature dimensionality, i.e.< d, the reconstructed iS on the order ofl,,. In practice, this is more difficult and no

a random projection matri» ¢ R™*¢, the hash values are
computed by

feature vector can be represented as existing work is found. In our scenario, if the owner and the
) . client do not reveal any feature data, it is difficult for the server
f=P -h. (15)  to obtain such pairs. Furthermore, the owner might regularly

Otherwise, the reconstruction is achieved by update the encryption key to thwart plaintext attacks.

f=P-n, (16)

where PT = (PTP)~'P" is the pseudo-inverse P in a |t 5 database ofV items is indexed byL-bit hash values, on
least-square sense. In the following, we distinguish two Casfferage each hash bucket hag2” items. If L > log, N,
depending on the knowledge &f. the server is likely to find a unique match with the query.
o ) When the available hash length is reduced.{p the number
7.1.1 The projection P is known of candidates in a hash bucket is approximately increased by
When the server know#, Eqgn. (15) or (16) can be directly 22+ times, which implies that the privacy level is magnified
used. However, the server is limited by two factors: 1) Thgy 2%+ times. In order to maintain a constant privacy level, we
magnitude information is lost due to the sign operation imight requireN/sz > k, which can be linked to the notion
Eqn. (14); 2) only partial hash bits are accessible. We evalugtek-anonymity [14].

the quality of reconstruction by the correlation coefficient The privacy gap gives an intuition about the server’s in-
between original and reconstructed feature vectors. The @#pability in terms of retrieval performance. How does it
erage results are shown in Fig. 12. They are obtained usigther influence privacy protection in a long run? In order
50 thousand GIST features and synthetic Gaussian data. Wegain more insights, we define the following scenario.
notice that the reconstruction quality improves with the hasthe feature vectors are partitioned inté clusters. Given a
length. There is no significant difference between syntheigiery hash, the server's goal is to find out which cluster the
and real data. Since the server can typically access less thagry belongs to. In practice, the clusters can be compared
32 bits per hash, at best its correlation coefficient is less thﬂfl Categories of commercial products_ A user proﬁ|e can
0.2. That is a satisfactory result considering that privacy ise defined as a user’s preference over different categories.

7.2 Privacy analysis

more about ambiguity rather than confidentiality. Targeted recommendations are typically given according to
o _ profiles. Thus the server’s capability in predicting a query’s
7.1.2 The projection P is unknown cluster is directly linked to long-term privacy. We assume that

In this case, the server needs to find out the projectitine hash values of thé/ centroids are public. The server

matrix P first. The original P is an x d random (typically can predict a query’s cluster by comparing the unencrypted
Gaussian) matrix, but the server only needs to know part pért of the query hash with the corresponding part of each
it corresponding to the public hash length (i.e.» = L,), centroid hash. Figure 13 shows some experiment results with
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accuracy in predicting query’s cluster 8 COMPARE WITH STATE-OF-THE-ART
o | | ‘ ‘ In this section, we give an empirical comparison between our
ol , =jebg=f§2’r‘f/;r | proposal and SPEED approaches in terms of computation and
124 bit server communication complexity. Although this comparison is not
025} [ 32 bit, server | | exactly accurate due to several practical reasons, it suffices
I 128 bit, client

to give an approximate idea about the difference. To the best
of our knowledge, no SPEED approach has been proposed
for outsourced media search — all existing SPEED approaches
assume a two party (client-server) scenario. Furthermore, they
do not offer any trade-off.

In general, SPEED approaches consist of three parts: fea-
ture transformation, distance computation, and match find-
ing. Existing approaches typically share some similarity in
the distance computation part. A typical distance metric is
10 o e ° %0 the squared Euclidean distance. Denoting the feature dimen-

sionality by d, this metric roughly requiresi squares,d
exponentiation operationsy — 1 multiplications, and one
public key encryption for each database item [10]. All these
operations work with large numbers represented1b34 to
2048 bits. Hashing approaches, on the other hand, only require
d XOR operations ford-bit hash values. This explains why

o
N

accuracy

©
=
(5

0.1

0.05F

Fig. 13. Accuracy of query cluster prediction by hash
comparison with feature segmentation.

accuracy in predicting query’s cluster SPEED approaches are generally slower than their hashing
0.8 T T T .
I 5 bit, server counterparts. Some examples are given below.
I 16 bit, server H H _ : it
07 I 24 b corver We consider the privacy-preserving face recognition by

[ 32 bit, server Erkin et. al [10] as a baseline. It is an eigenface-based
I 128 bit, client recognition system implemented by homomaorphic encryption.
Their experiment involves 320 database records and 80 query
items. Specifically, each database item is represented by a 12-
dimensional feature vector. During a query, the query image
is first projected to 12 eigenface vectors; then the Euclidean
distance is computed between the query and each database
item, followed by ranking. It typically takes about 40 seconds
to compare a query with all database items. An average
accuracy of 96% can be achieved.

Our experiment with the same dataset shows that a similar
20 P 50 accuracy level can be achieved by a hash-based approach.

Specifically, each database item is represented by a 256-bit

hash value. During a query, the query image is first projected
to 128 eigenface vectors; then a 256-bit hash value is generated
by LSH; finally the Hamming distance is computed between
the query hash and each database item, followed by ranking.
We assume that the server sends all hash values of the
database to the client. It only takes about 0.3 ms to compare
50 thousand GIST vectors (256-D after PCA). We set the query with all database items. However, our simulation
number of clusters\/ from 10 to 50. This number could be ygeg not include symmetric decryption. The speed of software
larger in practice. However, prediction is easier for smdll hjlemented symmetric encryption such as AES is about 100
For the server, at best its accuracy is belows, which is  \B per second in 2008 Taking decryption into account, our
sufficiently low to guarantee poor profiling accuracy. We alsg|ytion take approximately 0.5 ms, which is still 80,000 times
show the client’s performance in the same figure. In fact, thiscier than [10].
task is also difficult for the client, whose best accuracy is The time cost of [10] can be reduced to 18 seconds by
below 0.3. This is due to the limited hash length and featurye_computation. Sadeghi et. al [11] further improved the ef-
segmentation (i.e. divide the feature vector into parts agdiency by replacing part of the protocol with garbled-circuit,
hash them separately). Figure 14 shows the prediction resyligich results in 15.5 seconds. Osadchy et. al [12] proposed
without feature segmentation. The accuracy is improved Wiyifferent secure face recognition algorithm based on facial
still poor for the server. We can conclude that hashing wifaatyre vocabularies. This algorithm exhibits better recognition

feature segmentation is “privacy friendly”, which blurs theyerformance than the eigenface approach. However, it takes
feature representation; partial encryption further prevents the

server from accurate profiling. 2. http://www.cryptopp.com/benchmarks.html

o
o

accuracy
o o o o
N w N o

o
o

Fig. 14. Accuracy of query cluster prediction by hash
comparison without feature segmentation.
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0.3 seconds to compare a query with a database item (determined by the available information at the client. When the
96 seconds for a database of 320 items). Note that thgmformance requirement changes or the database grows, the
large values do not include the time for offline preprocessinigash lengths can be adjusted accordingly. Since the number of
which can be even more significant. Recentlgdhka et. representable items grows exponentially with the hash length,
al proposed another secure protocol for biometric compamur solution is suitable for large-scale applications.
ison [42]. They reported various time costs according to In particular, our work does not presume whether owner
different settings. Regardless of the recognition performanasta is accessible to the client or not, because it works in
their protocol at best takes about 23 ms per comparison. (hath cases. Nevertheless, for the more strict scenario (i.e.,
solution is still about 15,000 times faster. the database is totally confidential), the privacy guarantee is

Table 1 summarizes the comparison between the afosmmehow debatable and application-dependent, because of the
mentioned methods. We can observe a trade-off betweaformation leak. This might be interesting for future study.
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