
1

Cloud workflow scheduling with deadlines and
time slot availability

Xiaoping Li, Senior Member, IEEE, Lihua Qian, and Rubén Ruiz

Abstract—Allocating service capacities in cloud computing is based on the assumption that they are unlimited and can be used at
any time. However, available service capacities change with workload and cannot satisfy users’ requests at any time from the cloud
provider’s perspective because cloud services can be shared by multiple tasks. Cloud service providers provide available time slots
for new user’s requests based on available capacities. In this paper, we consider workflow scheduling with deadline and time slot
availability in cloud computing. An iterated heuristic framework is presented for the problem under study which mainly consists of
initial solution construction, improvement, and perturbation. Three initial solution construction strategies, two greedy- and fair-based
improvement strategies and a perturbation strategy are proposed. Different strategies in the three phases result in several heuristics.
Experimental results show that different initial solution and improvement strategies have different effects on solution qualities.

Index Terms—Workflow, Scheduling, Time slots, Cloud computing.

F

1 INTRODUCTION

Nowadays much attention has been paid on workflow schedul-
ing in service computing environments (cloud computing, grid
computing, Web services, etc). Resources are generally pro-
vided in the form of services, especially in cloud computing.
There are two common ways for service delivery: (i) An
entire application as a service, which can be directly used
with no change. (ii) Basic services are combined to build
complex applications, e.g., Xignite and StrikeIron offer Web
services hosted on a cloud on a pay-per-use basis [1]. Among
a large number of services in cloud computing, there are many
services which have same functions and supplied by different
cloud service providers (CSPs). However, these services have
different non-functional properties. Basic services are rented
by users for their complex applications with various resource

services imply higher costs. Services are consumed based on
Service-Level Agreements, which define parameters of Quality
of Service in terms of the pay-per-use policy.

Though there are many parameters or constraints involved
in practical workflow scheduling settings, deadline and time
slot are two crucial ones in cloud computing, a new market-
oriented business model, which offers high quality and low
cost information services [2]. However, the two constraints
have been considered separately in existing researches. It is

• Xiaoping Li and Lihua Qian work at the School of Computer Science and
Engineering, Southeast University, Nanjing, China, 211189; and also at
the Key Laboratory of Computer Network and Information Integration,
Southeast University, Ministry of Education, 211189, Nanjing, China. Tel:
86-25-52090916; Fax: 86-25- 52090916.
E-mail:xpli@seu.edu.cn

• Rubén Ruiz works at the Grupo de Sistemas de Optimización Aplicada,
Instituto Tecnológico de Informática, Ciudad Politécnica de la Innovación,
Edifico 8G, Acc. B. Universitat Politècnica de València, Camino de Vera
s/n, 46021, València, Spain.
E-mail:rruiz@eio.upv.es

necessary to consider both of the constraints jointly because:
(i) Deadlines of the workflow applications needs to be met. (ii)
Unreserved time slots is crucial for resource utilization from
the perspective of service providers. (iii) Utilization of time
slots in reserved intervals should be improved to avoid renting
new resources (saving money). In this paper, we consider the
workflow scheduling problem with deadlines and time slot
availability (WSDT for short) in cloud computing. To the best
of our knowledge, the considered problem has not been studied
yet.

Service capacities are usually regarded to be unlimited in
cloud computing, which can be used at any time. However,
from the CSP’s perspective, service capacities are not unlim-
ited. Available service capacities change with workloads, i.e,
they cannot satisfy user’s requests at any time when a cloud

slots are provided for new coming users by CSPs in terms of
their remaining capacities. For example, each activity in Figure
1 has different candidate services with various execution times,
costs and available time slots. For activity 4, there are two
candidate services with different workloads. If service 0 is
selected for activity 4, the execution time is 4 with the price
6 and available time slots [0,4)

⋃
[9,14). Time slot [4,9) is

unavailable because there is no remaining capacity.
The considered WSDT problem is similar to the the Discrete

Time/Cost Trade-off Problem (DTCTP) [3] to some extent. We
can modify existing algorithms for the latter to the problem
under study with less than 200 activities and no more than 20
candidate services in the service pool, spending thousands of
seconds. However, the number of activities is usually far more
than 200 in practical workflow applications which makes the
modified versions are not suitable for the problem under study.

Generally, longer execution time implies cheaper cost in
cloud computing for the DTCTP. However, this is not true for
the WSDT. In other words, the fastest schedule of the WSDT
does not mean the highest total cost in a pricing model where

1939-

1

2

3

4

5

6

Activity(execution,cost,{slot})

 slot = (starttime , endtime)

workload

2 204 8 12

 capacity

6 10 14 16 18

2 204 8 12

 capacity

6 10 14 16 18

Service 0

Service 1

time

time

4

(4,6,{(0,4),(9,14)...})

(5,2,{(0,5),(7,14),...})

 activity

Fig. 1. A workflow example with time slots constraints

the cost is in the inverse proportion to the execution time.
For the example depicted in Figure 1 and Table 1, Figure 2
shows the fastest schedule and a non-fastest one where xijk=1
means the kth available time slot of M j

i is selected for vi (M j
i

is the jth available service list of vi). In the fastest schedule
π1={x100=1, x200=1, x310=1, x411=1, x510=1, x600=1},
each activity vi chooses the service to finish as early as
possible. The finish time is f6=12 and the total cost is 21.
The non-fastest schedule is π2={x100=1, x200=1, x300=1,
x401=1, x510=1, x600=1} with the finish time f6=13 and the
total cost 27. Figure 2 shows that the total cost of the fastest
schedule is less than that of the non-fastest one. Therefore,
existing methods for the DTCTP cannot be directly adapted
to the WSDT. It is necessary to propose new algorithms for
the problem under study.

TABLE 1
Activity-Service Pool for the example

Activities Services
(Time,Cost,{Time Slot List})

v1 (0,0,{[0,+∞)})
v2 (3,8,{[1,6),[8,10)}),(4,5,{[4,8),[9,12)})
v3 (3,9,{[2,6),[10,13)}),(4,7,{[0,5),[7,12)})
v4 (4,6,{[0,4),[9,14)}),(5,2,{[0,5),[7,14)})
v5 (5,6,{[2,9),[12,15)}),(7,4,{[3,16),[20,28)})
v6 (0,0,{[0,+∞)})

The main contributions of this paper are summarized below:
• Using mixed integer programming, we mathematically

cost

(b) A non-fastest schedule

2 4 6 8 10 12 14 16

V2

X200=1

V3:

X300=1

V4:X401=1

V5:X510=1 Finish Time=13

COST = 27

time

cost

(a) The fastest schedule

time

2 4 6 8 10 12 14 16

24

20

16

12

8

4
V2:

X200=1

V3:

X310=1

V4:X411=1

V5: X500=1

Finish Time=12

COST = 21

24

20

16

12

8

4

Fig. 2. A fastest schedule against a non-fastest one

model the cloud workflow scheduling problem with dead-
lines and time slot availability to minimize total costs
from the CSPs perspective.

• An iterated heuristic framework is presented for the
problem under study which includes three phases: initial
solution construction, improvement, and perturbation.

• Concerning for the different characteristics of the consid-
ered WSDT problem from the classical DTCTP, effective
and efficient rules for the three phases are presented,
based on which several heuristics are constructed.

The rest of the paper is organized as follows. The state
of the art is reviewed in Section 2. Section 3 describes the
WSDT problem and preparations in detail. Section 4 presents
the proposed heuristic framework and developed heuristics.
Experimental results are given in Section 5, followed by
conclusions and future researches in Section 6.

2 RELATED WORK

Cloud computing is a new market-oriented business model
which provides elastic computing and storage resource on
demand. Though this kind of computing paradigm becomes
increasingly important for computation-intensive tasks in big

2
IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

.

3

data [4]–[7], much attention has been paid on scientific work-
flows.

Deadline constrained workflow scheduling is one of the
most popular scheduling problems in cloud computing [8]–
[11]. Appropriate services are selected for all the activities
in the involved workflow to maximize objectives. Minimizing
time delay, costs and time-cost trade-off are common objec-
tives. Service selection for workflow scheduling considering
both time and cost was modeled as the Discrete Time/Cost
Trade-off Problem (DTCTP) [3]. Each workflow or project
activity can be fulfilled by more than one service, which
consists of a service pool. Generally, workflows are represent-
ed by Direct Acyclic Graphes (DAGs). Deadlines (or budget
limitations) are usual constraints for workflow scheduling.
The DTCTP with deadline or budget limitation constraints
was called DTCTP-D [12]. The DTCTP-D is harder than the
DTCTP and the DTCTP was proven to be NP-hard [13]. It
follows that the DTCTP-D is NP-hard as well.

Many exact, heuristic and meta-heuristic algorithms have
been developed for the DTCTP-D during the past decades.
Exact algorithms, such as dynamic programming [14], the
branch and bound [3], benders decomposition [12], were
proposed. However, exact algorithms are usually heavily time-
consuming for complex workflow instances when the number
of activities is more than 200. Based on deadline division, sev-
eral heuristics were developed for the DTCTP-D in distributed
computing environments. Yu et al. [15] proposed the Deadline
Markov Decision Process (DMDP) method for utility work-
flow scheduling. DMDP partitioned the DAG into subgraphs
and assigned each partition a sub-deadline according to the
minimum execution time of activities and the whole workflow
deadline. Yuan et al. [16] presented the Deadline Early Tree
(DET) method where a single critical path was constructed to
distinguish critical and non-critical activities. Critical activities
were scheduled first and the non-critical ones were scheduled
according to their priorities. The priorities were determined
by floats or slacks (the amount of time that a task could be
delayed without causing a delay of both subsequent tasks and
the project due date). Abrishami et al. [17] proposed the Partial
Critical Paths (PCP) method. All activities were partitioned
into different partial critical paths. Each partial critical path
was scheduled according to priorities of its activities. They
demonstrated that PCP outperforms DMDP and DET. Liu et
al. [18] proposed the Path Balanced based Cost Optimization
(PBCO) algorithm which adjusted the length of each path in
a workflow. A deadline was set for each task. The remaining
time was distributed proportionally to tasks according to the
number of tasks at each level (the depth of a path node from
the source or sink node [15], [16]) using the bottom level
strategy. PBCO demonstrated better performance than DET
and DBL. Though it seems that there is no existing work on the
DTCTP-D, a few metaheuristics were proposed for workflow
scheduling in Grid computing ([19], [20]) or only for the
DTCTP [21].

Most existing methods for workflow scheduling in cloud
computing consider only task constraints (e.g., deadlines)
from the perspective of users. Services are rented with an
interval-based pricing model. Rented intervals are exclusively

reserved and owned by users, i.e., cloud resources (services)
are assumed to be unlimited during these intervals. Cai et
al. [22] presented service scheduling with start time con-
straints in distributed collaborative manufacturing systems.
They modeled this problem as a Discrete Time-Cost Trade-
off Problem with Start Time Constraints (DTCTP-STC) and
proved it to be NP-hard. A dynamic programming algorithm
was presented for small instances. Cai et al. [23] considered
the traditional service selection problem with time/cost trade-
off under the workflow deadline constraint. Based on the
proposed Critical Path based Iterative heuristic (CPI) in [23],
they considered shareable service provisioning for workflows
in public clouds in [24]. The List-based Heuristic considering
Cost minimization and Match degree maximization heuristic
(LHCM) was proposed for maximizing utilization, which was
based on several priority rules for assigning tasks to rented
services. LHCM guided users to choose proper type and
number of shareable services for batch or Message Passing
Interface (MPI) tasks. A special type of shareable service
provisioning problem was considered in [25], where one task
could be executed on only one Virtual Machine (VM) instance.
Reserved intervals resulted in time slots for the cloud services
from the perspective of resource providers. In addition, there
would be some time slots in reserved intervals because the
required amount of resources is less than that of the rented
resources.

3 PROBLEM FORMULATION AND PREPARA-
TION

The WSDT and the DTCTP have different available time slots.
In the DTCTP, each service can be used at any time, namely
the available time slot for each service is [0,+∞). To illustrate
the different time slots between the WSDT and the DTCTP,
a set of candidate services for the activities in Figure 1 are
shown in Table 1. v1 and v6 are dummy activities. Both of
them have only one candidate service with the execution time
0, the cost 0, and the available time slot [0,+∞). Activity v2
has two available services M0

2 and M1
2 . The execution time

and cost of M0
2 are 3 and 8 and those of M1

2 are 4 and 5. The
available time slot of each candidate service of v2 is [0,+∞) in
the DTCTP while available time slot lists of M0

2 and M1
2 are

{[1,6),[8,10)} and {[4,8),[9,12)} respectively in the WSDT.
Within the same deadline (e.g., 12), optimal schedules with
total cost minimization for the DTCTP and the WSDT are
different, as depicted in Figure 3. The optimal schedule’s cost
of the WSDT is greater than that of the DTCTP because of
different available time slots. In addition, the DTCTP can be
seen as a special case of the WSDT when the available time
slot is [0,+∞) for each service. The DTCTP was proven to
be NP-hard [13]. It is natural that the WSDT is NP-hard.

A workflow application can be represented by a directed
acyclic graph G(V,E). V={v1,v2,...,vn} is the set of activities
and E={(vi,vj)|vi,vj∈V } is the set of arcs (precedences
between activities). v1 and vn are two dummy activities.
Each arc (vi,vj)∈E (i 6=j) indicates that vj cannot start until
vi finishes. The service pool Mi={M0

i ,M
1
i ,...,M

N c
i −1

i } of
vi∈V is composed of N c

i candidate services. The services are

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

.

4

cost

(b) DTCTP-DTS

time

2 4 6 8 10 12 14 16

V2

X200=1

V3:

X310 =1

V4:X411=1

V5:X510=1

cost

(a) DTCTP

time

2 4 6 8 10 12 14 16

20

16

12

8

4
V2:

X21=1

V3:

X31=1

V4:X41=1

V5:

X51=1 Deadline

20

16

12

8

4

Deadline

COST=18

COST=21

Fig. 3. Optimal schedules of the DTCTP and the WSDT
constrained by the deadline of 12 units.

provided by different CSPs. M j
i is the jth service of vi. The

available time slot list of M j
i with length N s

ij is represented
as Sij=(Sij0,Sij1,...,Sij(N s

ij−1)). The kth available time slot
Sijk in M j

i is denoted as [Bijk,Fijk), where Bijk and Fijk

represent the start and end times of Sijk respectively. M j
i

with the execution time eij and cost cij is represented by
(Sij ,eij ,cij). fi denotes the finish time of vi. D is the given
deadline.

Since the problem under study is similar to those in [15]–
[18], [23], [24], the mathematical model is constructed using
the mixed integer programming. The following binary decision
variables are needed:

xijk=

{
1 time slot Sijk is chosen for activity vi
0 Otherwise

The following assumptions are given for workflow schedul-
ing in cloud computing: (i) Only one service is chosen for
each activity from its service pool. Only one available time
slot is selected from the corresponding service time slot list.
(ii) Each activity cannot be interrupted during execution. (iii)
The cost is in inverse proportion to the execution time. (iv)
The execution time includes computing and data transmission
times. (v) No service is shared by any two activities, i.e.,
services for different activities are independent. (vi) Service
pools of all the activities in workflow instances are constant.
The objective is to minimize total costs workflow applications
under given deadlines. The problem under study is modeled

as follows.

min
∑
vi∈V

N c
i∑

j=1

N s
ij∑

k=1

cijxijk (1)

s.t.
N c

i∑
j=1

N s
ij∑

k=1

xijk=1, vi∈V (2)

N c
i∑

j=1

N s
ij∑

k=1

(Bijk+eij)·xijk≤fi, vi∈V (3)

fi≤
N c

i∑
j=1

N s
ij∑

k=1

(Fijk·xijk), vi∈V (4)

fi−fp≥
N c

i∑
j=1

N s
ij∑

k=1

(eij ·xijk), (vp,vi)∈E (5)

fi≤D, i∈V (6)
xijk∈{0,1}, vi∈V, 0≤j<N c

i , 0≤k<N s
ij (7)

Exactly one service is assigned to each activity according to
constraint (2). The actual start time of each activity cannot be
earlier than the start time of the selected time slot according
to constraint (3). Constraint (4) guarantees that the actual
finish time of each activity cannot later than the finish time
of the selected time slot. Constraint (5) controls precedence
constraints. The deadline is met according to constraint (6).
Constraint (7) defines binary decision variables.

In a workflow application, a schedule is an assignment of
services to activities, i.e., each activity vi selects the kth time
slot Sijk in the service list M j

i or xijk=1. Because of the
time slot constraint for each service, the activity vi may not
start immediately after all of its predecessors complete, i.e., it
has to wait for being allocated to an available time slot. We
let Pi and Qi represent sets of immediate predecessors and
immediate successors of vi respectively. For each activity vi,
the following temporal parameters are calculated recursively
using dynamic programming.

(i) Let Sijke
t

be the earliest available time slot for vi in
the service list M j

i at time t. Sijke
t

is the time slot
with Fijk≥t and max{t,Bijk}+eij≤Fijk, which can be
obtained by traversing M j

i from the head to the tail
with time complexity O(N s

ij). B
A
ij(t) denotes the actual

available start time if Sijke
t

is selected, i.e., BA
ij(t)=

max{t,Bijke
t
}. Est(i) and Eft(i) are the earliest start

and finish times of vi respectively. Obviously, Est(1)=0
and Eft(1)=0. For each remaining activity vi, the two
parameters are calculated by the following way with time
complexity O(N s

ij×N c
i +|Pi|).

Est(i)= min
j=0,...,N c

i −1

{
BA

ij(max
p∈Pi

{Eft(p)})
}

(8)

Eft(i)= min
j=0,...,N c

i −1

{
BA

ij(max
p∈Pi

{Eft(p)})+eij
}

(9)

(ii) Let Sijkl
t

be the latest available time slot for vi in
the service list M j

i at time t. Sijkl
t

is the time slot

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

.

5

satisfying Bijk≤t and min{t,Fijk}−eij≥Bijk, which
can be obtained by traversing M j

i from the tail to
the head with time complexity O(N s

ij). F
A
ij (t) denotes

the actual latest finish time if Sijkl
t

is selected, i.e.,
FA
ij (t)=min{t,Fijkl

t
}. Lst(i) and Lft(i) are the latest

start and finish times of vi. Obviously, Lst(n)=D and
Lft(n)=D. For each remaining activity vi, the two
parameters can be calculated by the following way with
time complexity O(N s

ij×N c
i +|Pi|).

Lft(i)= max
j=0,...,N c

i −1

{
FA
ij (min

s∈Qi

{Lst(s)})
}

(10)

Lst(i)= max
j=0,...,N c

i −1

{
FA
ij (min

s∈Qi

{Lst(s)})−eij
}

(11)

For simplicity, a solution is denoted as π={(i,M j
i)|xijk∗=

1} in this paper, in which xijk∗=1 means the earliest available
time slot Sijk∗ in M j

i . A schedule is feasible if and only
if Eft(i)≤fi≤Lft(i) for each activity vi. Because services
are dynamically allocated in cloud computing, an extreme
case is that the problem under study is unsolvable when no
assignment of services to activities would result in Eft(n)≤D,
i.e., any assignment leads to Eft(n)≥D.

4 PROPOSED ALGORITHMS

The service assignment for each activity in the WSDT de-
pends on both finish times of all predecessors and available
time slots of the service. In this paper, an Iterated Local
Adjusting Heuristic framework (ILAH) is proposed for the
problem under study. ILAH consists of four components:
Time Slot Filtering, Initial Solution Construction, Solution
Improvement and Perturbation. ILAH starts from an initial
solution π. Improving and perturbing operations are performed
on π iteratively until the termination criterion is satisfied. The
termination criterion is set as α, the number of consecutive
iterations without improvement. Let C(π) be the total cost of
π. The high level procedure of ILAH is described in Algorithm
1.

Algorithm 1: ILAH

1 begin
2 Time Slot Filtering;
3 Generate the initial solution π by an initial solution

construction strategy;
4 πbest←π, C(πbest)←C(π);
5 while (termination criterion not met) do
6 π← Improve(π);
7 if (C(πbest)>C(π)) then
8 πbest←π, C(πbest)←C(π);
9 Perturbation(π);

10 return πbest.

For the last three components, we present three initial
solution construction strategies, two improvement methods and
one perturbation strategy.

4.1 Time Slot Filtering
Though there are many available time slots, not all of them
meet requirements of activities of workflow instances. Some
available time slots might not be available for an activity vi
even before the service assignment. For example, Eft(n)>D
in the fastest schedule, or the duration of a time slot is less
than the execution time of the activity, or the start or finish
time is beyond the earliest start or the latest finish time of the
activity. By filtering out all impossible time slots, remaining
time slots are eligible for activities of the instance, which
make workflow scheduling much more efficient. The Time Slot
Filtering procedure is given in Algorithm 2.

Algorithm 2: Time Slot Filtering

1 begin
2 for (each vi∈V) do
3 Calculate Est(i), Eft(i), Lft(i), Lst(i) using

equations (8), (9), (10), (11);
4 if (Eft(n)>D) then
5 return NULL;

/* infeasible problem */

6 for (each vi∈V) do
7 for (each service M j

i ∈Mi) do
8 for k = 0 to N s

ij−1 do
9 if Fijk−Bi,j,k<eik or Bi,j,k>D or

Bijk>Lft(i) or Fijk<Est(i) then
10 Remove sijk from Sij ;

11 if (N s
ij=0) then

12 Remove M j
i from Mi;

13 for (each vi∈V) do
14 Generate the service pool Mi by sorting all

candidate services in non-increasing order of
costs;

15 return {Mi}.

The time complexity of Steps 2∼5 is O(n×(N s
ij×N c

i +
|Pi|)), that of Steps 6∼12 is O(n×N s

ij×N c
i), and that of Steps

13∼14 is O(n×N c
i ×lnN c

i). Therefore, the time complexity
of the Time Slot Filtering procedure is O(n×((N s

ij+lnN c
i)×

N c
i +|Pi|)).

4.2 Initial solution construction strategies
Start and finish time parameters along with available time
slots are dynamically changed once an activity is assigned
to a service. Different service assignments to activities result
in different initial solutions. In this paper, we present three
priority rules, based on which three initial solution construc-
tion strategies are developed. The Minimum Average Cost
First (MACF) method focuses on the cost of an activity and
those of its immediate successors, i.e., costs among activi-
ties. The Maximum Cost Ascending Ratio First (MCARF)
strategy considers the two services with the lowest costs for
of same activity. The Earliest finish time first (EFTF) rule

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

.

6

takes into account the earliest finish times of all activities.
We let bij and fij be the start and finish times of activity
vi by selecting service M j

i . Service M j
i is available only

when bij∈[Est(i),Lst(i)] and fij∈[Eft(i),Lft(i)]. Otherwise,
service M j

i is unavailable.

4.2.1 Minimum Average Cost First (MACF)
MACF generates initial solutions according to the minimum
average cost on an activity and its immediate successors.
A smaller average cost implies a higher priority of activity
choosing a service. After an available service M j

i is select-
ed for vi, fij=BA

ij(Est(i))+eij and the earliest start times
of all immediate successors of vi are updated by Est(q)=
max{fij ,Est(q)} (∀q∈Qi). Let Msj

q be the cheapest available
service for activity vq when M j

i is selected for vi. W(i,j)
denotes the average cost on activity vi and all of its successors
and W

∗
i represents the Minimum Average Cost W(i,j) among

all available services of vi. W(i,j) and W
∗
i are calculated by

W(i,j)=
(
cij+

∑
q∈Qi

cqsj

)
/(|Qi|+1) (12)

W
∗
i= min

j=0,...,N c
i −1

{
W(i,j)

}
(13)

Let S and U be sets of scheduled and unscheduled activities,
which are initialized as S={1,n} and U={2,...,n−1} respec-
tively. Services M0

1 and M0
n are assigned to the two dummy

activities v1 and vn respectively. Est(1)=0 and Eft(1)=0. The
four temporal parameters Est(i), Eft(i), Lst(i) and Lft(i)
(∀vi∈V) calculated in the Time Slot Filtering are used for
further computation.

For each i∈U , W
∗
i is calculated by Equations (12) and (13).

Since smaller W
∗
i implied higher priority of vi, the list LU

is constructed by sorting all values of W
∗
i (i∈U) in non-

decreasing order, denotes as LU=
(

W
∗
[1], W

∗
[2], ..., W

∗
[|U |]

)
,

i.e., W
∗
[1]≤W

∗
[2]≤...≤W

∗
[|U |]. The highest priority activity v[1]

in LU is removed from U and appended to S. v[1] is assigned
to the available service M j∗

[1] , in which j∗=arg{W∗[1]}. We
check the position of the successor q∗j of v[1] with the
biggest Minimum Average Cost (i.e., W

∗
q∗j
=maxq∈Q[1]

{W∗q}).
If the position of q∗j is greater than α×|U | (α∈[0,1]), q∗j is
removed from U and appended to S. q∗j is assigned to its
cheapest available service. After an activity is appended to
S or assigned a service, the four temporal parameters of each
activity vi in the workflow instance are recalculated as follows:
(i) Calculate Est(i) and Eft(i) by assigning the available time
slots with the earliest finish times of the selected services to
scheduled activities, assigning the earliest available services
to unscheduled activities. (ii) Calculate Lst(i) and Lft(i) by
assigning the available time slots with the latest finish times
of the selected services to scheduled activities, assigning the
latest available services to unscheduled activities.

In terms of newly obtained parameters, LU is updated. The
process is repeated until all activities are scheduled. MACF
is formally described in Algorithm 3. We obtain that the time
complexity of MACF is O(nN c

i +n
2lnn), which is mainly

related to that of calculating W
∗
i using Equation (13) and that

of the sorting all W
∗
i (i∈U).

Algorithm 3: Minimum Average Cost First (MACF)
Input: Temporal parameter sets Est, Eft, Lst, and Lft

for all activities of the considered workflow
application calculated by the Time Slot Filtering.

1 begin
2 S←{1,n}, U←{2,...,n−1}, M←∅, LU←∅;
3 π←{(1,M0

1),(n,M
0
n)};

4 while (|U |>0) do
5 for each i∈U do
6 Calculate W

∗
i according to Equation (13);

7 Record the service M j
i corresponding to W

∗
i ;

8 M←M∪{M j
i };

9 Sort all W
∗
i (i∈U) in non-decreasing order, i.e.,

W
∗
[1]≤W

∗
[2]≤...≤W

∗
[|U |];

10 LU←
(

W
∗
[1], W

∗
[2], ..., W

∗
[|U |]

)
;

11 s←arg max
q∈Q[1]

{
W
∗
q

}
; /* The immediate

successor of v[1] with the
biggest Minimum Average Cost */

12 Select the available service M j∗

[1] corresponding
to v[1] from M ;

13 π←π∪{(v[1],M j∗

[1])};
14 U←U/arg(v[1]), S←S∪{arg(v[1])};
15 k←argvj=s(W

∗
[j]);

/* k the position of s in LU. */
16 if (k≥|U |/2) then
17 Select the available service M j′

[k]

corresponding to the activity s from M ;
18 π←π∪{(s, M j′

[k])};
19 U←U/arg(v[k]), S←S∪{arg(v[k])};
20 for each i∈U do
21 Update Eft(i), Est(i), Lft(i), and Lst(i);

22 return π.

4.2.2 Maximum Cost Ascending Ratio First (MCARF)
Let M j

i and Mk
i be the cheapest and the second cheapest

available services for vi, Tmin is the total cost of all activities
selecting the cheapest services without considering availability
of time slots. Mk

i might not exist (i.e., cik=∞), for which a
binary variable is defined as

yi=

{
1 if Mk

i exists or cik<∞
0 otherwise

The cost ascending ratio RI
i of a feasible service for activity

vi is a measure calculated as

RI
i=yi

(cik−cij)cij
cik

+(1−yi)
cij(n−2)
Tmin

(14)

A bigger RI
i implies a higher additional cost if activity

vi is not assigned to the cheapest available service M j
i .

The Maximum Cost Ascending Ratio First (MCARF) strategy

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

7

chooses the service with the highest cost ascending ratio RI
i

for vi, i.e., MCARF first assigns an appropriate service to the
activity vi which has the highest cost ascending ratio RI

i . A
faster cost increase of an activity means a higher priority for
choosing its service. MCARF is similar to MACF, which is
formally described in Algorithm 4. Similar to the analyzing
process of Algorithm 3, the time complexity of Algorithm 4
is O(n2lnn).

Algorithm 4: Maximum Cost Ascending Ratio First (M-
CARF)
Input: Temporal parameter sets Est, Eft, Lst, and Lft

for all activities of the considered workflow
application calculated by the Time Slot Filtering.

1 begin
2 S←{1,n}, U←{2,...,n−1}, M←∅;
3 π←{(1,M0

1),(n,M
0
n)};

4 while (|U |>0) do
5 for i=0 to |U |−1 do
6 Calculate RI

i of activity vi according to
Equation (14);

7 Record the service M j
i corresponding to RI

i ;
8 M←M∪{(i,M j

i)};
9 k←argmaxi∈U{RI

i };
10 π←π∪{(k,M j′

k)};
/* The element (k,M j′

k)∈M */
11 U←U/{k}, S←S∪{k};
12 for each i∈U do
13 Update Eft(i), Est(i) and Lft(i), Lst(i);

14 return π.

4.2.3 Earliest finish time first (EFTF)
The Earliest finish time first (EFTF) rule constructs initial
solutions according to priorities of activities. A smaller Eft(i)
means a higher priority for vi to be assigned a service, i.e.,
choosing the service time slot with the earliest finish time can
make activity vi finish as early as possible. Obviously, if the
scheduling problem is solvable, π must be feasible.

4.3 Improvement strategies
Let est(i), lst(i) and lft(i) be the earliest start time, the latest
start time, and the latest finish time of activity vi respectively
in the current solution π. M j

i is the service assigned to vi in
π. There are some adjustable activities (non-critical activities)
in π, i.e., the earliest start time and the latest start time of
each activity are not the same when there are at least two
available services for each adjustable activity. In other words,
vi is adjustable if and only if est(i)<lst(i) and there is at least
another available service M j′

i which is different from M j
i . The

total cost of the workflow instance can be further optimized by
assigning different services to some adjustable activities while
keeping the assignment of their predecessors unchanged. In
this paper, we develop two improvement heuristics to exhibit

these ideas. Both of them are backwards adjusting heuristics,
i.e., they search adjustable activities from the last activity (sink
node) to the first activity (source node) in a topological order.

4.3.1 Greedy Improvement Heuristic (GIH)
After an adjustable activity vi is found, we compute the Cost
Decreasing Ratio RD

ijj′ between M j
i and each cheaper service

M j′

i by

RD
ijj′=(cij−cij′)/(eij′−eij) (15)

The available service M j∗

i with the maximum RD
ijj∗ in

[est(i), lft(i)] is selected to substitute M j
i , i.e., RD

ijj∗=
max{RD

ijj′}. Algorithm 5 gives the detailed description. Let
the degree of activity vi be di. All successors and predecessors
of the n activities are visited just once when calculating the
latest finish times and the earliest start times, i.e., there are∑n

i=1di activities being visited. Therefore, the time complex-
ity of Algorithm 5 is O(

∑n
i=1di).

Algorithm 5: Greedy Improvement Heuristic (GIH)
Input: Initial solution π, the earliest start time of each

activity vi according to π, est={est(i)|i=1,...,n}.
1 begin
2 lft(n)←D, lst(n)←D, cost←0;
3 for i=n−1 to 1 do
4 Calculate the latest finish time of vi by

lft(i)←min
q∈Qi

{
lst(q)

}
;

5 Calculate the earliest start time of vi by

est(i)←max
pi∈Pi

{
eft(pi)

}
;

6 Compute RD
ijj′ for all candidate available services

in [est(i),lft(i)] using Equation (15);
7 Select the available service M j∗

i with RD
ijj∗=

max{RD
ijj′} to replace the current service M j

i ;
8 Update the element (i,M j

i) of π with (i,M j∗

i);
9 Update lst(i) according to M j∗

i ;

10 return π.

4.3.2 Fair Improvement Heuristic (FIH)
The GIH tries to decrease the cost by assigning a cheaper
service that has the maximum Cost Decrease Ratio for each
vi. Though the GIH can reduce the total cost, it might reduce
the number of cheaper available services of its predecessors
and resulted in inferior solutions. For this reason, we presented
the Fair Improvement Heuristic (FIH) rule.

Instead of substituting M j
i of adjustable activity vi with the

cheapest available service with the maximum Cost Decrease
Ratio, the FIH simply selects the second cheapest available
service in [est(i),lft(i)] for the substitution. The process is
iterated until there is no substitution in an iteration. The FIH
is formally described in Algorithm 6. Similar to the analysis
process of the GIH, the time complexity of Algorithm 6 is
also O(

∑n
i=1di).

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

8

Algorithm 6: Fair Improvement Heuristic (FIH)
Input: Initial solution π, the earliest start time of each

activity vi according to π, est={est(i)|i=1,...,n}.
1 begin
2 lft(n)←D, lst(n)←D, cost←0, flag←TRUE;
3 while flag do
4 flag←FALSE;
5 for i=n−1 to 1 do
6 Calculate the latest finish time of vi by

lft(i)←min
q∈Qi

{
lst(q)

}
;

7 Calculate the earliest start time of vi by

est(i)←max
pi∈Pi

{
eft(pi)

}
;

8 Substitute M j
i with the second cheapest

available service M j′

i in [est(i),lft(i)] for vi;
9 Update the element (i,M j

i) of π with
(i,M j′

i);
10 Update lst(i) according to M j′

i ;
11 flag←TRUE;

12 return π.

4.4 Perturbation

The ILAH is likely to get trapped into local optima after some
iterations. To enhance the diversification of the search process,
a Perturbation method is introduced. Starting from a solution
π, bnβc (0<β<1) activities are randomly selected and their
current service assignment are changed by more expensive
services, which can result in bigger adjustment intervals. The
new solution is then improved by the FIH or the GIH with the
hope of finding a better solution than before.

Substituting the current service M j
i of vi with a more

expensive available service, M j′

i might lead to changes in
the start and finish times of predecessors and successors. Let
`p and `s be the increased slack or float time of immediate
predecessors and successors of vi respectively with the substi-
tution. `p=stij′−stij , where stij′ is the start time of vi with
service M j′

i and stij is the start time of vi with the current
service M j

i . `s=ftij′−ftij , where ftij′ is the finish time of
vi with service M j′

i and ftij is the finish time of vi with the
current service M j

i . If the service substitution delays the start
time of vi (`p>0), more float time will be available for all of
its immediate predecessors. Otherwise, no more float (`p=0)
is available for its immediate predecessors. If the finish time
ftij′ with service M j′

i becomes smaller than that ftij with
the current service M j

i , i.e., `s>0, more float time will be
available for all of its immediate successors. Otherwise, no
more float (`s=0) is available for its immediate successors.
The cost increase ratio per float unit RF

ijj′ of substituting M j
i

with M j′

i for vi is defined by

RF
ijj′=

{
+∞ `p=0 and `s=0 or no such M j′

i
cij′−cij

|Pi|×`p+|Qi|×`s Otherwise
(16)

A smaller RF
ij=min{RF

ijj′} means a less cost increasing
ratio per float unit and vi has a higher priority to replace its
current service with a more expensive one. To avoid repeating
substitution on the same activity with the same available
service, we perform replacement on the activity with the mth

smallest RF
ij if there is no improvement in consecutive m

iterations (m≤α). Perturbation results in the change of floats
of other activities. Therefore, all RF

ij are updated after each
substitution. Perturbation repeats the substitution until bnβc
activities are replaced. The process is shown in Algorithm 7.

Algorithm 7: Perturbation
Input: Initial solution π, m, M←∅.

1 begin
2 count←0, U←{1,...,n};
3 while (count<bnβc) do
4 for each i∈U do
5 Calculate RF

ij=min{RF
ijj′} of activity vi

according to Equation (16);
6 Record the service M j∗

i corresponding to RF
ij

to M , i.e., M←M∪{(i,M j∗

i)};
7 Sort all activities in non-decreasing order of RF

ij ;
8 Select the activity vi with the mth smallest RF

ij

and replace M j
i with the corresponding available

service;
9 Update the element related to vi in π;

10 U←U/i;
11 count←count+1;

12 return π.

5 EXPERIMENTAL ANALYSIS

There are several variants for each component or parameter of
the proposed algorithm framework. We calibrate components
and parameters first, based on which three heuristics are
compared. All involved algorithms are coded in Java and run
on Intel(R) Core(TM) i7-4770 CPU @3.40GHz with 8GB
RAM on Windows Server 2008 R2 standard. The termina-
tion criterion is set as the maximum computation time n2

t
(t∈{5,10,20}) milliseconds.

5.1 Parameter and Component Calibration
The termination condition parameter t=5, i.e., the computation
time is limited to n2

5 milliseconds for all combinations.
WSDT calibration instances are randomly generated. Sev-

en instance factors result in different workflows. These
are: N , M , OS, CF , CP , Loadnum and DF . N∈
{200,400,600,800,1000} is the number of activities in a
workflow. M is the size of service pool, which takes a
uniformly random value from {[2,10], [11,20], [21,30]}.
The complexity of network structures is measured by OS∈
{0.1,0.2,0.3} according to [26]. In terms of [12], the cost func-
tion CF∈{convex,concave,hybrid}. We let MinMakespan
be the minimal makespan without time slots constraints (all

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

9

activities select the shortest durations). CP∈{3,4,5} is the
longest time horizon factor of services which determines the
longest time horizon of service TH=CP×MinMakespan.
LoadNum∈{0,1,2} is the total length of unavailable time slot
to TH×10. DF∈{0.2,0.4,0.6} is the deadline factor. Dmin

is the makespan of fastest schedule. The deadline D=Dmin+
(TH−Dmin)×DF . Therefore, there are 5×3×3×3×3×3×3
= 3645 instance combinations. One calibration instance is
randomly generated for each combination, i.e., 3645 instances
are test to calibrate the components and parameters.

Though there are three initial solution generation strategies
(EFTF, MACF and MCARF), there is a parameter α in MACF.
In this paper, we test all values of α∈{0.25,0.5,0.75,1}, i.e.,
four MACFs are tested. By replacing Equation (14) of MCAR-
F with RI

i=yi(
cij
cik

)2+(1−yi) cij(n−2)Tmin
, a new rule MCARF0

is obtained. In addition, the RANDOM strategy is involved,
which generates initial solutions randomly. In other words,
we calibrate eight variants of the initial solution construction
component. Three variants of the improvement component are
evaluated: GIH, FIH and NONE (no improvement strategy). β
takes values from {0, 0.2, 0.4, 0.6, 0.8, 1}, i.e., 6 candidates
for β are considered. There are two operations for time slots:
filtering and non-filtering. There are 8×3×6×2=288 combi-
nations of components and parameters. For each combination,
five replicates are obtained. Totally, 3645×288×5=5,248,800
results are obtained in the calibration.

Experimental results are analyzed by the multi-factor anal-
ysis of variance (ANOVA) technique [27]. A number of
hypotheses have to be ideally met by the experimental data.
The main three hypotheses (in order of importance) are the in-
dependence of the residuals, homoscedasticity or homogeneity
of the factor’s level variance and normality in the residuals of
the model. Apart from a slight non-normality in the residuals,
all the hypotheses are easily accepted. The response variable
in the experiments is RPD (Relative Percentage Deviation) for
each algorithm in every instance. Let Vi(H) be the solution of
instance i obtained by algorithm H and V ∗i be the optimum
solution for i. The RPD is defined as

RPD=
Vi(H)−V ∗i

V ∗i
×100% (17)

Figure 4 shows the means plot of the perturbation parameter
β with different values and 95.0% Tukey HSD intervals.
Figure 4 means that differences between any pair of values
are not statistically significant, especially when β>0. The RPD
is the smallest when β=0.4 and it is the largest when β=0.
There is a statistically significant difference between the two
cases. However, the difference is not large. β takes 0.4 in the
following experiments.

Figure 5 shows the means plot of improvement strategies
and 95.0% Tukey HSD intervals. Figure 5 demonstrates that
there is no statistically significant difference between the FIH
and the GIH. The NONE has the largest RPD which implies
that the FIH and the GIH are effective improvement strategies.
We choose both FIH and GIH as improvement strategies in the
following experiments.

Figure 6 shows the means plot of initial solution generation
strategies and 95.0% Tukey HSD intervals. Figure 6 implies

that differences between any pair of the four types of initial
solution generation strategies (EFTF, MACF, MCARF and
RANDOM) are significant. RPDs of the MACF with different
parameters have no statistically significant differences. M-
CARF and MCARF0 have the lowest RPD. RPDs of MCARF
and MCARF0 are slightly less than those of MACFs but much
smaller than those of the EFTF and the RANDOM, which
indicates that MCARF and MCARF0 are effective for the
problem under study. However, it is strange that the EFTF
has the largest RPD, even worse than RANDOM. The main
reason lies in that the EFTF chooses service time slots with
the earliest finish times which always results in poor initial
solutions. Both the MCARF and the EFTF are selected as
initial solution generation strategies for the proposed algorithm
in the following comparing experiments.

Figure 7 shows interactions between the eight initial so-
lution construction strategies and the three improvement s-
trategies with 95.0% Tukey HSD intervals. From Figure 7,
we can observe that combinations between MACFs and the
three improvement strategies and those between MCARFs
and the three improvement strategies have similar RPDs. It
is strange that the combinations between two improvement
strategies (FIH and GIG) and RANDOM have nearly the
best RPDs which demonstrate that FIH and GIG are effective
improvement strategies except for the EFTF.

5.2 Algorithm Comparison

To the best of our knowledge, there is no existing algorithm
for the problem studied in this paper. Except the Time Slot
Filtering component of ILAH (the statistical difference is not
significant between ILAHs with and without the Time Slot
Filtering component in the above calibration), there are two
variants of the Initial Solution Construction (MCARF and
EFTF), two candidates of the Solution Improvement (FIH
and GIH) and one Perturbation operator (β=0.4). Therefore,
we compare four ILAH-based algorithms: MCFIH, MCGIH,
EFIH and EGIH. The MCARF are selected by the MCFIH
and the MCGIH while the EFTF are chosen by the EFIH and
the EGIH to generate initial solutions.

The termination criterion is set as the maximum computa-
tion time n2

20 (i.e., t=20) milliseconds. To avoid bias in the
result, we do not take results from the previous calibration
experiments but rather we run all algorithms again. For each
of the 3645 instance combinations, 10 instances are randomly
generated, i.e., totally 3645×10×4=145800 tests are conduct-
ed for the four algorithm comparisons. For each algorithm, the
average RPD on 10 instances of every combination is used to
measure the algorithm’s effectiveness.

To demonstrate the performance of the compared algorithms
in a sound and statistical way, we first analyze the experimental
results using the same ANOVA tool as before. The means plot
of compared algorithms and 95.0% Tukey HSD intervals is
shown in Figure 8.

Figure 8 illustrates that the EFIH has the smallest RPD
and the EGIH has the largest, the difference is statistically
significant. The RPD difference between the MCFIH and the
MCGIH is not statistically significant. However, RPDs of

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

10

0 .2 .4 .6 .8 1

.44

.46

.48

.5

.52

β

R
e
la

ti
v
e
 P

e
rc

en
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Fig. 4. Means plot of β and 95.0% Tukey HSD intervals.

FIH GIH NONE

Improvement strategy

.24

.34

.44

.54

.64

.74

.84

R
e
la

ti
v
e
 P

e
rc

en
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Fig. 5. Means plot of improvement strategies and 95.0%
Tukey HSD intervals.

.4

.8

1.2

1.6

2

2.4

Initial Solution Construction strategy

R
e
la

ti
v
e
 P

e
rc

en
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Fig. 6. Means plot of initial solution construction strate-
gies and 95.0% Tukey HSD intervals.

Initial Solution Construction strategy

1

2

3

4

R
e
la

ti
v
e
 P

e
rc

en
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Improvement

FIH

GIH

NONE

Fig. 7. Interactions between initial solution construction
strategies and improvement strategies with 95.0% Tukey
HSD intervals.

EFIH EGIH MCFIH MCGIH

Means and 95.0 Percent Tukey HSD Intervals

Algorithms

0

2

4

6

8

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

Fig. 8. Means plot of compared algorithms and 95.0%
Tukey HSD intervals.

the MCFIH and the MCGIH are significantly different from
those of the EFIH and EGIH. It is surprising that the EFIH
outperforms the other three algorithms though the performance

of EFTF is even worse than that of RANDOM to generate
initial solutions. This implies that the FIH is much more
effective than the GIH for improving poor solutions.

To further demonstrate the performance of the four com-
pared algorithms, ARPDs (Average Relative Percentage Devi-
ation) on all instance combinations are shown in Table 2.

From Table 2, we observe that the EFIH has the smallest
ARPDs on all parameter combinations. The EGIH has the
largest ARPD on each parameter combinations. The MCFIH
and the MCGIH have similar ARPDs on all the instances.
The average ARPDs of the four algorithms supports the results
shown in Figure 8. The average ARPD of EFIH is only 1.17%
which is much better than that of EGIH with 7.44%. The
average ARPDs of MCFIH and MCGIH are 4.52% and 4.68%,
which are worse than that of EFIH.

5.3 Influences of instance parameters on the com-
pared algorithms’ performance

Table 2 also shows that ARPDs of the compared algorithms
are different when an instance parameter takes different values.
We analyze influences of six instance parameters (M , OS,

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

11

TABLE 2
ARPDs of the compared algorithms

Parameter Value EFIH EGIH MCFIH MCGIH

DF 0.2 1.24 5.06 2.13 2.26
0.4 1.17 7.28 4.55 4.68
0.6 1.09 9.99 6.87 7.08

N 200 1.68 6.45 4.15 4.35
400 1.43 7.01 4.28 4.37
600 1.08 7.55 4.37 4.59
800 0.96 8.07 5.02 5.21
1000 0.70 8.14 4.75 4.85

OS 0.1 1.11 6.86 4.49 4.62
0.2 1.19 7.64 4.17 4.34
0.3 1.20 7.83 4.90 5.06

LoadNum 0 1.14 5.91 4.85 5.12
1 0.98 7.89 4.85 4.93
2 1.38 8.53 3.84 3.98

CF convex 0.87 0.93 9.47 9.54
concave 1.30 15.82 1.49 2.06
hybrid 1.32 5.59 2.59 2.42

M U[2,10] 2.71 15.99 6.92 7.43
U[11,20] 0.47 4.91 4.60 4.60
U[21,30] 0.31 1.43 2.03 2.00

CP 1 1.37 6.43 2.66 2.83
2 1.07 7.78 4.34 4.55
3 1.06 8.13 6.55 6.64

Average 1.17 7.44 4.52 4.68

CF , CP , Loadnum and DF) on the compared algorithms’
performance using the ANOVA tool as before. Interactions
between each parameter and the compared algorithms with
95.0% Tukey HSD intervals are depicted in Figure 9.

Figure 9 illustrates that the size of service pool M exerts
great influences on the performance of the compared algo-
rithms. The RPDs are the smallest when M takes U[21,30].
All algorithms obtain similar RPDs in the U[21,30] case. The
reason lies in that a bigger service pool gives more service
candidates which leads to smaller total costs. RPD differences
are statistically significant for each algorithm in the three
cases except that the RPD difference of the EFIH is not
statistically significant in the U[11,20] and U[21,30] cases.
OS exerts a little influence on the compared algorithms. RPD
differences are not statistically significant for each algorithm
in all cases. The cost function CF has a great influence
on the EGIH. However, RPD differences are not statistically
significant for the EFIH with any cost functions. The MCFIH
and the MCGIH obtain much poorer performance when we
adopt the convex cost function. RPD differences of EFIH and
EGIH for different CP values are not statistically significant
while those of MCFIH and MCGIH are statistically significant.
With the increase of CP , the RPD of EFIH decreases but
those of the other three increase. Loadnum gives impact on
the performance of the EGIH. RPD differences of the EGIH
are statistically significant for different Loadnum values.
However, RPD differences of the other three algorithms are
not statistically significant for different Loadnum values, i.e.,
Loadnum exerts a little influence on EFIH, MCFIH and
MCGIH. RPD differences of the EFIH are not statistically

significant whereas those of the other three are statistically
significant for different DF values. In addition, RPDs increase
with the increase of DF for all the compared algorithms
except the EFIH.

Table 2 and Figure 9 demonstrate that the proposed EFIH is
the most robust algorithm among the proposals for all instance
parameters (M , OS, CF , CP , Loadnum and DF). In other
words, EFIH is suitable for scheduling deadline constrained
realistic workflow applications (e.g., Montage, CyberShake,
Epigenomics, LIGO, and SIPHT) on rented resources (e.g.,
EC2 virtual machines from Amazon). In addition, EFIH is ap-
plicable to workflow scheduling in cloud manufacturing where
virtualized manufacturing resources are rented for worklfow
applications with deadlines.

6 CONCLUSIONS AND FUTURE WORK

We have considered workflow scheduling with deadline and
time slots constraints in cloud computing to minimize total
costs. The problem was modeled as the WSDT which is
more practical than the DTCTP. We proved that the WSDT
had different properties from the DTCTP. The ILAH (iterated
local adjusting heuristic) framework was proposed for the
NP-hard WSDT. Three initial solution construction strategies
were developed among which the MCARF and the MACF
showed more effective than the EFTF on initial solution
construction. Two improvement strategies, the FIH and the
GIH, were introduced which had similar influences on the
solution improvement. The FIH was very effective for improv-
ing poor solutions. By integrating the worst and best initial
solution construction strategies (EFTF and MCARF) with the
two improvement strategies, four ILAH-based algorithms were
developed. Though the EFTF was the worst initial solution
construction strategy, it was strange that the EFIG showed
the best performance. However, the EGIH obtained the worst
performance. In addition, the EFTF was not sensitive to
instance parameters while the EGIH was affected by most of
the parameters.

For future research, the impact of different pricing interval
lengths on workflow scheduling is worth studying. Instance-
intensive workflows is also a desirable area of study for future
work.

ACKNOWLEDGMENT

This work has been supported by the National Natural Science
Foundation of China (Nos. 61572127, 61272377) and the
Key Research & Development Program in Jiangsu Province
(No. BE2015728). Rubén Ruiz is partially supported by the
Spanish Ministry of Economy and Competitiveness, under the
project “RESULT - Realistic Extended Scheduling Using Light
Techniques” (No. DPI2012-36243-C02-01) partially financed
with FEDER funds.

REFERENCES

[1] C. Weinhardt, A. Anandasivam, B. Blau, and J. Stößer, “Business models
in the service world.” IT professional, vol. 11, no. 2, pp. 28–33, 2009.

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

12

(a) M

U[2,10] U[11,20] U[21,30]

R
el

a
ti

v
e

P
er

ce
n

ta
g

e
D

ev
ia

ti
o

n
 (

%
)

(b) OS

0.1 0.2 0.3

(c) CF

convex concave hybrid

Algorithms

EFIH
EGIH

MCFIH
MCGIH

-1

2

5

8

11

14

17

0

2

4

6

8

10

0

3

6

9

12

15

18

(d) CP

0

2

4

6

8

10

1 2 3

R
el

a
ti

v
e

P
er

ce
n

ta
g

e
D

ev
ia

ti
o

n
 (

%
)

(e) LoadNum

0

2

4

6

8

10

0 1 2

(f) DF

0

2

4

6

8

10

12

0.2 0.4 0.6

Algorithms

EFIH
EGIH

MCFIH
MCGIH

Fig. 9. Interactions between instance parameters and the compared algorithms with 95.0% Tukey HSD intervals.

[2] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as computing
utilities,” in High Performance Computing and Communications, 2008.
HPCC’08. 10th IEEE International Conference on. IEEE, 2008, pp.
5–13.

[3] E. L. Demeulemeester, W. S. Herroelen, and S. E. Elmaghraby, “Opti-
mal procedures for the discrete time/cost trade-off problem in project
networks,” European Journal of Operational Research, vol. 88, no. 1,
pp. 50–68, 1996.

[4] X. Zhang, L. Yang, C. Liu, and J. Chen, “A scalable two-phase top-down
specialization approach for data anonymization using mapreduce on
cloud,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 2, pp. 363–373, 2014.

[5] M. Menzel, R. Ranjan, L. Wang, S. Khan, and J. Chen, “Cloudgenius:
A hybrid decision support method for automating the migration of web
application clusters to public clouds,” IEEE Transactions on Computers,
vol. 64, no. 5, pp. 1336–1348, 2015.

[6] W. Dou, X. Zhang, J. Liu, and J. Chen, “Hiresome-ii: Towards privacy-
aware cross-cloud service composition for big data applications,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 2, pp.
455–466, 2015.

[7] C. Liu, R. Ranjan, C. Yang, X. Zhang, L. Wang, and J. Chen, “Mur-dpa:
Top-down levelled multi-replica merkle hash tree based secure public
auditing for dynamic big data storage on cloud,” IEEE Transactions on
Computers, vol. 64, no. 9, pp. 2609–2622, 2015.

[8] A. Verma and S. Kaushal, “Deadline constraint heuristic–based genetic
algorithm for workflow scheduling in cloud,” International Journal of
Grid and Utility Computing, vol. 5, no. 2, pp. 96–106, 2014.

[9] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169, 2013.

[10] S. Abrishami and M. Naghibzadeh, “Deadline-constrained workflow
scheduling in software as a service cloud,” Scientia Iranica, vol. 19,
no. 3, pp. 680–689, 2012.

[11] A. G. Delavar and Y. Aryan, “Hsga: a hybrid heuristic algorithm for
workflow scheduling in cloud systems,” Cluster computing, vol. 17,
no. 1, pp. 129–137, 2014.

[12] C. Akkan, A. Drexl, and A. Kimms, “Network decomposition-based
benchmark results for the discrete time–cost tradeoff problem,” Euro-

pean Journal of Operational Research, vol. 165, no. 2, pp. 339–358,
2005.

[13] P. De, E. J. Dunne, J. B. Ghosh, and C. E. Wells, “Complexity of the
discrete time-cost tradeoff problem for project networks,” Operations
Research, vol. 45, no. 2, pp. 302–306, 1997.

[14] T. J. Hindelang and J. F. Muth, “A dynamic programming algorithm
for decision CPM networks,” Operations Research, vol. 27, no. 2, pp.
225–241, 1979.

[15] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scientific
workflow applications on utility grids,” in e-Science and Grid Comput-
ing, 2005. First International Conference on. IEEE, 2005, pp. 8–pp.

[16] Y. Yuan, X. Li, Q. Wang, and X. Zhu, “Deadline division-based heuristic
for cost optimization in workflow scheduling,” Information Sciences, vol.
179, no. 15, pp. 2562–2575, 2009.

[17] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Cost-driven schedul-
ing of grid workflows using partial critical paths,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 8, pp. 1400–1414, 2012.

[18] C.-C. Liu, W.-M. Zhang, and Z.-G. Luo, “Path balance based heuris-
tics for cost optimization in workflow scheduling,” Ruan Jian Xue
Bao/Journal of Software, vol. 24, no. 6, pp. 1207–1221, 2013, (in
Chinese).

[19] J. Yu and R. Buyya, “Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms,” Scientific
Programming, vol. 14, no. 3, pp. 217–230, 2006.

[20] W.-N. Chen and J. Zhang, “An ant colony optimization approach to a
grid workflow scheduling problem with various qos requirements,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 39, no. 1, pp. 29–43, 2009.

[21] H. Mokhtari, R. Baradaran Kazemzadeh, and A. Salmasnia, “Time-cost
tradeoff analysis in project management: An ant system approach,” IEEE
Transactions on Engineering Management, vol. 58, no. 1, pp. 36–43,
2011.

[22] Z. Cai, X. Li, and L. Chen, “Dynamic programming for services
scheduling with start time constraints in distributed collaborative man-
ufacturing systems,” in Systems, Man, and Cybernetics (SMC), 2012
IEEE International Conference on, 2012, pp. 803–808.

[23] Z. Cai, X. Li, and J. N. D. Gupta, “Critical path-based iterative
heuristic for workflow scheduling in utility and cloud computing,” in
Service-Oriented Computing (ICSOC), 11 th International Conference
on. Springer, 2013, pp. 207–221.

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

13

[24] ——, “Heuristics for provisioning services to workflows in XaaS
Clouds,” IEEE Transactions on Services Computing, Accepted, Doi:
10.1109/TSC.2014.2361320.

[25] Z. Cai, C. L. Li, Xiaoping, and J. N. D. Gupta, “Bi-direction adjust
heuristic for workflow scheduling in clouds,” in Parallel and Distributed
Systems (ICPADS), 2013 International Conference on. IEEE, 2013, pp.
94–101.

[26] E. Demeulemeester, M. Vanhoucke, and W. Herroelen, “Rangen: A
random network generator for activity-on-the-node networks,” Journal
of Scheduling, vol. 6, no. 1, pp. 17–38, 2003.

[27] T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, Exper-
imental methods for the analysis of optimization algorithms. Springer,
2010.

IEEE Transactions on Services Computing (Volume:PP , Issue: 99),14 January 2016

