
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 10, OCTOBER 2015 2119

Revisiting Attribute-Based Encryption With
Verifiable Outsourced Decryption

Suqing Lin, Rui Zhang, Hui Ma, and Mingsheng Wang

Abstract— Attribute-based encryption (ABE) is a promising
technique for fine-grained access control of encrypted data in
a cloud storage, however, decryption involved in the ABEs is
usually too expensive for resource-constrained front-end users,
which greatly hinders its practical popularity. In order to reduce
the decryption overhead for a user to recover the plaintext,
Green et al. suggested to outsource the majority of the decryption
work without revealing actually data or private keys. To ensure
the third-party service honestly computes the outsourced work,
Lai et al. provided a requirement of verifiability to the decryption
of ABE, but their scheme doubled the size of the underlying ABE
ciphertext and the computation costs. Roughly speaking, their
main idea is to use a parallel encryption technique, while one of
the encryption components is used for the verification purpose.
Hence, the bandwidth and the computation cost are doubled.
In this paper, we investigate the same problem. In particular,
we propose a more efficient and generic construction of ABE
with verifiable outsourced decryption based on an attribute-
based key encapsulation mechanism, a symmetric-key encryption
scheme and a commitment scheme. Then, we prove the security
and the verification soundness of our constructed ABE scheme
in the standard model. Finally, we instantiate our scheme with
concrete building blocks. Compared with Lai et al.’s scheme, our
scheme reduces the bandwidth and the computation costs almost
by half.

Index Terms— Attribute-based encryption, outsourced
decryption, verifiability, access control.

I. INTRODUCTION

W ITH the rapid development of cloud computing,
growing data is being centralized into the cloud for

sharing. To keep the data security and privacy for data owners,
the sharing data needs to be encrypted before being uploaded
and fine-grained access control is required. Attribute-based

Manuscript received September 22, 2014; revised February 5, 2015 and
June 11, 2015; accepted June 11, 2015. Date of publication June 23, 2015;
date of current version August 6, 2015. This work was supported in part by the
Foundation of Science and Technology on Information Assurance Laboratory
Under Grant KJ-14-002, in part by the Strategic Priority Research Program
through the Chinese Academy of Sciences, Beijing, China, (CAS), under
Grant XDA06010703 and Grant XDA06010701, in part by the One Hundred
Talents Project through CAS, in part by the National Natural Science Founda-
tion of China under Grant 61272478, Grant 61472416, Grant 61379142, and
Grant 61402468, and in part by the Shenzhen Governmental Research under
Grant ZDS Y20130402095348589 and Grant JSGG20130624154032565. The
associate editor coordinating the review of this manuscript and approving it
for publication was Dr. Sen-Ching S. Cheung. (Corresponding author: Rui
Zhang.)

S. Lin and H. Ma are with the State Key Laboratory of Information
Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China, and also with the University of Chinese
Academy of Sciences, Beijing 100049, China (e-mail: linsuqing@iie.ac.cn;
mahui@iie.ac.cn).

R. Zhang and M. Wang are with the State Key Laboratory of
Information Security, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing 100093, China (e-mail: r-zhang@iie.ac.cn;
wangmingsheng@iie.ac.cn).

Digital Object Identifier 10.1109/TIFS.2015.2449264

encryption (ABE) [1] was thus proposed to have flexible
access control of encrypted data utilizing access policies and
ascribed attributes associated with private keys and ciphertexts
respectively. In an ABE scheme, a specified private key can
decrypt a particular ciphertext only if associated attributes
and policy are matched. According to the ciphertext associ-
ated with an access policy or containing a set of attributes,
ABE schemes are divided into two kinds: ciphertext-
policy (CP) ABE [4]–[7] and key-policy (KP) ABE [8], [9].

The functionality of access control is very powerful,
however, expensive. For most of the existing pairing-based
ABE schemes (see [6], [8]), the number of pairing operations
to decrypt a ciphertext is linear to the complexity of the access
policy. It would be a significant challenge for users to complete
the decryption independently on resource-constrained devices,
e.g., mobile phones. In order to reduce the number of pairing
operations for users when executing the decryption algorithm,
Green et al. [2] considered outsourcing the heavy computation
of decryption to a third-party service, which helps to imple-
ment “thin clients.” They proposed a key blinding technique
to outsource the decryption without leaking data or secret
keys as a precaution against maliciously detecting from the
third-party service. A user provides a transformed key to
the service to outsource an ABE ciphertext and obtains a
constant-size ElGamal-style ciphertext, then utilizes the secret
retrieving key to recover the plaintext.

To guarantee the third-party service honestly executes
the outsourced computation, Lai et al. (LDGW) [3] introduced
verifiability to the outsourced decryption of ABE. Actually,
they added an extra instance to the underlying ABE scheme [6]
in the encryption/decryption algorithms, which is used for
verification. The technique added noticeable overhead to the
underlying ABE scheme: encryption requires the data sender
to encrypt an extra random message and compute a checksum
value related to two messages; decryption requires the
third-party service to execute the underlying decryption
algorithm twice and the data receiver to verify the outsourced
computation with respect to the encrypted messages. Although
the LDGW-scheme [3] is easy to understand, it works not so
well in practice: First, the scheme doubles the computation
costs of encryption and decryption compared to the underlying
ABE scheme. Second, the length of the ciphertext is twice
of that of the underlying ABE ciphertext. Therefore, the
following questions arise naturally:

1) Whether there exists a generic construction to introduce
verification to the outsourced decryption of ABE?

2) How to construct an ABE with verifiable outsourced
decryption more efficiently?

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2120 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 10, OCTOBER 2015

In this paper, we revisit ABE with verifiable outsourced
decryption (VO-ABE), and try to solve these problems.
We first present a generic construction of VO-ABE, based on
an attribute-based key encapsulation mechanism (AB-KEM),
a symmetric-key encryption scheme and a commitment
scheme. In our opinion, hybrid encryption and a commitment
can be used to add verification to the outsourced decryption
more efficiently and a proper verification algorithm should
be defined as a constraint during the final decryption for
the data receiver. Similar to the idea of blinding technique
in [2], we propose an appropriate transform for the actual
secret key to achieve outsourcing the decryption. In fact, the
transform we used here may be thought as a subclass of
all-or-nothing transforms (AONTs) [10], [11] with specific
properties ensuring secure outsourced computation. We insist
that our construction of VO-ABE is comprehensive and can
be operated easily and as secure as [3].

A. Our Contributions

In this paper, we propose a novel technique to build an
ABE with verifiable outsourced decryption (VO-ABE) based
on an AB-KEM, a symmetric-key encryption scheme and a
commitment scheme. We provide a unified model of VO-ABE,
which can be considered in both key-policy (KP) and
ciphertext-policy (CP) settings.

In [3], Lai et al. considered to introduce verification
to the outsourced decryption of ABE by adding an extra
instance in the encryption/decryption algorithms, which
duplicates the computation and communication overhead.
Instead of two parallel instances in the encryption/decryption
algorithms [3], we combine a hybrid encryption and a
commitment together to bundle the randomness to the
ciphertext, so that one can verify the outsourced computation
easily. Decryption is done in the natural way, but note that
the outsourced transform key is obtained by an appropri-
ate transform of the actual secret key with specific prop-
erties ensuring secure outsourced computation. We define a
verification algorithm for the data receiver to check the correct-
ness of the outsourced computation. Only if the verification is
passed, the data can be recovered in the decryption algorithm.
We prove that our constructed ABE scheme is secure and
meets the verification soundness in the standard model if the
underlying building blocks are secure.

In addition to the general method discussed above, we also
provide an instantiation of a VO-ABE scheme. We implement
our CP-ABE scheme with verifiable outsourced decryption and
show that the size of the ABE ciphertext and the encryption
cost of our scheme are both almost half of the scheme
in [3]. On the other hand, since we introduce an additional
commitment scheme, the final decryption cost is slightly more
than half of that in [3].

B. Related Work

Since the introduction of attribute-based encryption, most
of ABE systems are constructed with pairings while the
computation cost in the decryption phase grows along with
the size of the access policy. Attrapadung et al. [12] used

novel applications of aggregation techniques to achieve very
short ciphertexts so as to control the cost of decryption.
Hohenberger and Waters [13] succeeded in reducing the
decryption requirements to two pairings and two exponen-
tiations by making tradeoffs in the private key size. From
another point of view, Green et al. [2] introduced outsourced
decryption into ABE systems such that most of complex com-
putation of decryption algorithms is outsourced to an untrusted
third-party service, leaving only a smaller overhead for users
to recover the plaintext. For ABE systems with outsourced
decryption, a third-party service is given a transform key to
translate an ABE ciphertext into a constant-size ciphertext
on the same message without learning any information about
the message. The main effect of outsourcing the decryp-
tion of ABE ciphertexts is to delegate pairing operations
to a powerful device. Pairing delegation has been proposed
in [14]–[16], but applying pairing delegation to the decryption
does not overcome the disadvantage of growing computational
amount with the complexity of the access policy. Outsourcing
decryption is similar to proxy re-encryption [17], [18], where
there is no way to verify the proxy’s transform. Since
the proxy is untrusted, verifiable outsourced computation is
needed. Although verifiable computation has been considered
in [19] and [20] based on fully homomorphic encryption or
ABE schemes, all of them are impractical here. Lai et al. [3]
provided a feasible method to verify the outsourced decryption
and built a concrete ABE scheme with verifiable outsourced
decryption. In addition to outsourcing the decryption,
Li et al. [21], [22] also considered to outsource key-issuing
for ABE schemes by introducing two cloud service providers
to perform the outsourced key-issuing and decryption.

II. PRELIMINARIES

Notations. Let Alg(u, v, · · ·) → w (sometimes w ←
Alg(u, v, · · ·)) denote the operation of running an algorithm
Alg with inputs (u, v, · · ·) and output w. If S is a set,

|S| denotes its size and b
R←− S denotes the operation of

selecting an element b uniformly at random from S. If x and y
are two strings, |x | denotes the length of x , and x ‖ y denotes
the concatenation of x and y. Let N be the set of natural
numbers. 1λ (λ ∈ N) denotes the string of λ ones. Denote
λ as a security parameter. negl(λ) denotes a negligible function
(in λ), i.e., ∀n > 0, there exists λ0 ∈ N, s.t., negl(λ) < 1/λn ,
∀λ > λ0.

A. Bilinear Maps

Let G and GT be two multiplicative cyclic groups of prime
order p, and g is a generator of G. Let e : G × G → GT

be an efficiently-computable map satisfying that: 1) Non-
degeneracy: e(g, g) �= 1; 2) Bilinearity: ∀u, v ∈ G,∀a,
b ∈ Z

∗
p , e(ua, vb) = e(u, v)ab. We say (G, GT) is a bilinear

group pair and e is a bilinear map from G into GT .

B. Definitions for ABE and AB-KEM

There are two kinds of ABE schemes: key-policy
ABE (KP-ABE) and ciphertext-policy ABE (CP-ABE).

LIN et al.: REVISITING ABE WITH VERIFIABLE OUTSOURCED DECRYPTION 2121

In KP-ABE, each ciphertext is associated with a set of
attributes and each private key with an access policy.
Alternatively, in CP-ABE, the roles are flipped: attributes
sets are associated with private keys and access policies with
ciphertexts. Next, we present a unified definition for both
KP-ABE and CP-ABE schemes.

Definition 1 [23]: Let S represent an attribute set and
A an access structure. We set Ikey and Ienc as the inputs to
key generation and encryption algorithms respectively. In a
KP-ABE scheme (Ikey, Ienc) = (A, S), while in a CP-ABE
scheme (Ikey, Ienc) = (S, A). The function f is defined as
follows:

f (Ikey, Ienc) =
⎧
⎨

⎩

1, if Ienc ∈ Ikey in KP-ABE setting
1, if Ikey ∈ Ienc in CP-ABE setting
0, otherwise.

Definition 2 (ABE): An ABE scheme with an attribute
universe U for an access structure space P is defined by the
following polynomial-time algorithms:

Setup(1λ, U) → (P K , M SK): The setup algorithm takes as
input a security parameter λ and an attribute universe U, then
outputs a public key P K and a master secret key M SK .
KeyGen(P K , M SK , Ikey) → SK : The key generation
algorithm takes as input a public key P K, the master secret
key M SK and an access structure Ikey ∈ P for KP-ABE
(Ikey ⊆ U for CP-ABE), then outputs a private key SK .
Encrypt(P K , M, Ienc) → CT : The encryption algorithm
takes as input a public key P K, a message M, and an attribute
set Ienc ⊆ U for KP-ABE (Ienc ∈ P for CP-ABE), then outputs
a ciphertext CT .
Decrypt(SK , CT) → M: The decryption algorithm takes a
private key SK and a ciphertext CT as input, then outputs a
message M if f (Ikey , Ienc) = 1 and ⊥ otherwise.
Correctness. ∀ (P K , M SK) ←Setup(1λ, U), SK ←
KeyGen(P K , M SK , Ikey), ∀ M in the message space, if
f (Ikey, Ienc) = 1, M=Decrypt(SK , Encrypt(PK , M, Ienc)).

Similarly, a unified definition for AB-KEM in both
KP and CP settings is presented below. Here we omit descrip-
tions of inputs for simplicity.

Definition 3 (AB-KEM): An AB-KEM with an attribute
universe U for an access structure space P is a tuple of the
following polynomial-time algorithms:

Setup(1λ, U) → (P K , M SK): The setup algorithm returns
a public key and a master secret key (P K , M SK).
KeyGen(P K , M SK , Ikey) → SK : The key generation
algorithm returns a private key SK .
Encrypt(P K , Ienc)→ (DK, CT): The encryption algorithm
returns a session key DK and a ciphertext CT .
Decrypt(SK , CT) → DK: The decryption algorithm
returns the session key DK if f (Ikey, Ienc) = 1, and ⊥
otherwise.
Correctness. ∀ (P K , M SK) ← Setup(1λ, U), SK ←
KeyGen(P K , M SK , Ikey), and (DK, CT) ← Encrypt(P K ,
Ienc), if f (Ikey, Ienc) = 1, Decrypt(SK , CT) outputs DK.

Subsequently, we describe security models for an ABE
scheme �ABE and an AB-KEM �KEM, then provide the
formal definitions. Before that, we need to introduce the key
generation oracle defined as follows.

Key Generation Oracle. Given access to a public key P K and
a master secret key M SK, the key generation oracle OKeyGen(·)
takes as input Ikey and returns a private key SK generated
from: KeyGen(P K , M SK , Ikey)→ SK .
Ex pIND

A,�ABE
(1λ, U):

• Setup. The challenger runs the setup algorithm to obtain
(P K , M SK), and returns P K to the adversary A.

• Phase 1. A is given access to the oracle OKeyGen(·).
• Challenge. A submits two (equal length) messages M0,

M1 and I ∗enc to the challenger, where f (Ikey, I ∗enc) �= 1

for any Ikey issued to the oracle OKeyGen(·) in Phase 1.

The challenger picks b
R←− {0, 1} and sends to A

the challenge ciphertext CT ∗ generated from:
Encrypt(P K , Mb , I ∗enc)→ CT ∗.

• Phase 2. A is given oracle access to OKeyGen(·) with the
restriction that f (Ikey , I ∗enc) �= 1 for all issued Ikey .

• Guess. A outputs its guess b′ ∈ {0, 1}. The experiment
returns 1 if and only if b′ = b.

Definition 4 (Data Privacy of ABE): An ABE scheme is
indistinguishable under chosen plaintext attack (IND-CPA
secure) if for any probabilistic polynomial-time (PPT)
adversary A, the advantage in this security game:

∣
∣
∣
∣Pr

[
Ex pIND

A,�ABE
(1λ, U) = 1

]
− 1

2

∣
∣
∣
∣ ≤ negl(λ).

Selective Security: An ABE scheme is selectively secure if we
add an Init stage before Setup where the adversary commits
to the challenge I ∗enc.
Ex pIND

A,�KEM
(1λ, U):

• Setup. The challenger runs the setup algorithm to obtain
(P K , M SK) and sends P K to the adversary A.

• Phase 1. A is given oracle access to OKeyGen(·).
• Challenge. A submits I ∗enc to the challenger satisfying

that f (Ikey, I ∗enc) �= 1 for all Ikey issued to the oracle
in Phase 1. The challenger runs Encrypt(P K , I ∗enc) →
(DK, C∗). It selects b

R←− {0, 1}. If b = 0, it returns
(DK, C∗) to A. If b = 1, it chooses a random session key
RK from the session key space and returns (RK, C∗).

• Phase 2. A is given access to OKeyGen(·) with the
restriction that f (Ikey , I ∗enc) �= 1 for all issued Ikey .

• Guess. A outputs a guess b′ of b. The experiment returns
1 if and only if b′ = b.

Definition 5 (Data Privacy of AB-KEM): An AB-KEM is
IND-CPA secure if for any PPT adversary A, the advantage
in this security game:

∣
∣
∣
∣Pr

[
Ex pIND

A,�KEM
(1λ, U) = 1

]
− 1

2

∣
∣
∣
∣ ≤ negl(λ).

Selective Security: An AB-KEM is selectively secure if we
add an Init stage before Setup where the adversary outputs
the challenge I ∗enc.

C. Symmetric-Key Encryption

Definition 6 [24]: A symmetric-key encryption scheme is a
tuple of probabilistic polynomial-time (PPT) algorithms:
Gen(1λ)→ NK: The key generation algorithm takes as input
a security parameter λ and outputs a key NK.

2122 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 10, OCTOBER 2015

Enc(NK, M) → C: The encryption algorithm takes as
input a key NK and a plaintext M , then outputs a
ciphertext C .
Dec(NK, C) → M: The decryption algorithm takes as
input a key NK and a ciphertext C , then outputs a
plaintext M .
Correctness. ∀ NK ← Gen(1λ), and ∀ M in the message
space, M = Dec(NK, Enc(NK, M)).

Definition 7: A symmetric-key encryption scheme is seman-
tically secure if for any PPT adversary A the following
advantage is negligible:
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎣

(M0, M1)← A(1λ);
NK← Gen(1λ);
b

R←− {0, 1};
C∗ ← Enc(NK, Mb)

: A(1λ, M0, M1, C∗) = b

⎤

⎥
⎥
⎦−

1

2

∣
∣
∣
∣
∣
∣
∣
∣

.

D. Commitment Scheme

A commitment scheme is defined by a pair of probabilistic
polynomial-time (PPT) algorithms (Commit, Decommit)
between a sender S and a receiver R. During the commitment
phase, S commits to a message M with a random coin r
and sends Ĉ to R, where Ĉ = Commitr (M). During the
decommitment phase, S sends (M, r) to R and R verifies

Decommitr (Ĉ)
?= M . S and R are given common

parameters which are omitted here for simplicity. The
security requirements of a commitment scheme are defined
as follows.
Completeness: For any message M ,

Pr[Decommitr (Commitr (M))] = M.

(Computational) Hiding: For all (PPT) receiver R∗, it holds
that the following is negligible (∀M �= M ′):
∣
∣Pr

[R∗(Commitr (M)) = 1] − Pr[R∗(Commitr ′ (M ′)) = 1
]∣
∣

(Computational) Binding: For all (PPT) sender S∗, it holds
that the following is negligible (∀M �= M ′):

Pr

[(
M, r,
M ′, r ′

)

← S∗(Ĉ) : R(Ĉ, M, r) = R(Ĉ, M ′, r ′) = 1

]

Throughout this paper, we only require the commitment
scheme to be computationally hiding and binding.

E. Key Derivation Function (KDF)

A key derivation function (KDF) [25] takes an initial keying
material, which contains some good amount of randomness but
is not distributed uniformly or has leaked some information
to an adversary, and derives pseudorandom secret keys. The
pseudorandom secret keys are indistinguishable from a random
uniform distribution of the same length by polynomial-time
computation. Especially, part of the bits or keys output by
a KDF should not leak information on the other generated
bits. The definitions of a KDF and its security are provided as
follows.

Definition 8 (KDF): A key derivation function (KDF) takes
as input a secret key DK and a length �, and outputs a string
of � bits.

Definition 9 (Security of KDF): A key derivation function
KDF is secure if for any PPT adversary A, the following is
negligible:

∣
∣Pr

[A(KDF(DK, �)) = 1
]− Pr

[A(R) = 1
]∣
∣.

Here DK denotes an initial secret key and � is an output length,
and R is chosen uniformly at random from {0, 1}�.

F. Endomorphism Transform

Motivated by all-or-nothing transform (AONT) [10], [11],
we define a new transform, called endomorphism transform,
which may be viewed as a subclass of AONT with the property
of endomorphism. In terms of functionality, an endomorphism
transform changes an input into two parts: one part is the secret
output that maintains completely confidential from any adver-
sary as opposed to AONT on the sufficient bits secrecy; the
other is the public output that can be obtained by any adversary
similar to AONT, but with endomorphism requirement on the
input domain. In terms of security, an endomorphism trans-
form has the same security requirements as AONT, i.e., every
PPT adversary should have no information about the input of
the transform assuming it obtains the public output.

Specifically, the formal definition of an endomorphism
transform on a multiplicative group is provided below.

Definition 10 (Endomorphism Transform): Let X be a mul-
tiplicative group and Z denotes the set of integers. A random-
ized polynomial-time computable function T : X→ Z × X is
an endomorphism transform if it satisfies that:
1) Invertibility : there is a polynomial-time machine T ′ such
that for any x ∈ X and any (T1, T2) ∈ T (x), we have
T ′(T1, T2) = x. Here T1 denotes the secret output and
T2 denotes the public output.
2) Indistinguishability : the public outputs {T2(x) : x ∈ X}
are all indistinguishable from each other, i.e., T2(x0) ≈
T2(x1),∀x0, x1 ∈ X. Here ≈ denotes computational
indistinguishability.
3) Endomorphism : the public output T2 : X → X is an
endomorphism on the multiplicative group X, i.e.,

T2(u · v) = T2(u) · T2(v), ∀u, v ∈ X.

Consider an endomorphism transform T defined on a
multiplicative cyclic group X of prime order p. Let G and GT

be multiplicative cyclic groups of prime order p and e : G×
G→ GT is a bilinear map. Up to isomorphism, there is just
one cyclic group of prime order p. Thus the public output
T2 : X → X meets the same multiplicative homomorphism
either on G or GT . We note that the construction where
e(g, T2(h)) = e(T2(g), h) = T2(e(g, h)),∀ g, h ∈ G, holds
for both prime order and composite order bilinear groups [26].

In fact, for any generator c ∈ G, suppose that T2(c) = cK,
k ∈ Zp . Since T2 is a multiplicative homomorphism on G,
it holds that T2(g) = gk for any g ∈ G. The non-degeneracy
of the bilinear map e implies that e(c, c) is a generator of GT .
With the same multiplicative homomorphism T2 on GT ,
we have T2(e(c, c)) = e(c, c)k . Then T2(e(g, h)) = e(g, h)k,
∀ g, h ∈ G.

LIN et al.: REVISITING ABE WITH VERIFIABLE OUTSOURCED DECRYPTION 2123

Let us review the key blinding technique proposed in [2]:
Choose a blinding factor exponent z ∈ Z

∗
p , where p ∈ �(2λ),

and produce the transform key T K = SK z for the private
key SK, while the blinding factor z is kept as the secret
retrieving key. Actually, this implicitly defines an endomor-
phism transform T on a cyclic group X of prime order p
as T (d) = (T1, T2) = (z, dz), ∀z ∈ Z

∗
p,∀d ∈ X. Here

T2(d) = dz, ∀d ∈ X is a multiplicative homomorphism on
X and X can be G or GT . When the secret output T1 = z
is kept hidden, all the public outputs {dz : d ∈ X} are
computationally indistinguishable from each other supposing
that the Discrete-Logarithm assumption holds. The inverse
transform of T is defined as T ′(T1, T2) = T 1/T1

2 for any T (d)
to recover the input d .

Generally, an endomorphism transform defined on a
multiplicative group can be used to outsource decryption of
AB-KEM ciphertexts for most pairing-based AB-KEMs of
which the decryption algorithm merely involves multiplica-
tion and pairing evaluation. Taking a private key SK of an
AB-KEM as input of the endomorphism transform, a user
obtains two outputs (T1, T2(SK)), where T2(SK) denotes the
result of operating T2 on each key component of SK, and
sends the public output T2(SK) to a proxy for outsourcing
the decryption while keeps the output T1 secret. Since the
proxy does not get any knowledge about the secret output,
it can not learn any information about the original private
key even if the public output is provided. The proxy runs the
decryption algorithm Decrypt(T2(SK), CT) of the AB-KEM
by using the transform key T2(SK) and sends the conse-
quence to the user. For any AB-KEM of which the decryption
algorithm just contains multiplication and pairing evaluation,
since the public output is an endomorphism on the input
group, it is not difficult to infer that the result from the
proxy is the same as applying the endomorphism trans-
form to the decrypted result by using the original private
key, i.e., Decrypt(T2(SK), CT) = T2(Decrypt(SK , CT)).
Because the endomorphism transform is efficiently computable
and invertible, the user can recover the message successfully
by applying the inverse transform to the result received from
the proxy.

III. MODEL OF VO-ABE

In [3], the model of CP-ABE with outsourced decryp-
tion consists of seven algorithms (Setup, KeyGen, Encrypt,
Decrypt, GenTKout , Transformout , Decryptout). A trusted
party generates the public parameters and a master secret key
by running the algorithm Setup, and a user obtains a private
key generated by the trusted party running KeyGen. After
taking the ciphertext, the user decides whether to outsource
decryption of the ciphertext. If the user wants to outsource
decryption, he can execute the algorithm GenTKout and use
his private key to generate the transform key by himself.
Taking as input the transform key and a ciphertext, the proxy is
able to change the ciphertext into a constant-size ciphertext by
the algorithm Transformout if the set of attributes associated
with the private key satisfies the access structure associated
with the ciphertext. Then the plaintext can be recovered from

the transformed ciphertext by the algorithm Decryptout . Based
on the model of CP-ABE with outsourced decryption proposed
in [3], we formally define a verification algorithm and provide
the model of VO-ABE as follows.

Definition 11 (VO-ABE): A VO-ABE with an attribute
universe U for an access structure space P is defined by the
following polynomial-time algorithms:
Setup(1λ, U) → (PP, M SK): The setup algorithm takes
as input a security parameter λ and an attribute universe
description U, then outputs the public parameters PP and
a master secret key M SK .
KeyGen(PP, M SK , Ikey) → SKI : The key generation algo-
rithm takes as input the public parameters PP, the master
secret key M SK, and an access structure Ikey ∈ P for
KP-ABE (an attribute set Ikey ⊆ U for CP-ABE), then
outputs a private key SKI .
Encrypt(PP, M, Ienc)→ CT : The encryption algorithm takes
as input the public parameters PP, a message M and an
attribute set Ienc ⊆ U for KP-ABE (an access structure
Ienc ∈ P for CP-ABE), then outputs a ciphertext CT .
Decrypt(PP, SKI , CT) → M: The decryption algorithm
takes as input the public parameters PP, a private key SKI

and a ciphertext CT , then returns a message M.
GenTK(PP, SKI)→ (T SK , T KI): The transform key gener-
ation algorithm takes as input the public parameters PP and
a private key SKI , then outputs a transform key T KI and a
secret value T SK used for retrieving the encrypted message.
Transformout(PP, CT, T KI) → CT ′: The transform algo-
rithm takes as input the public parameters PP, a ciphertext
CT and a transform key T KI , then outputs a transformed
ciphertext CT ′.
Verify(PP, CT ′, T SK)→ (b, st): The verification algorithm
takes as input the public parameters PP, a transformed
ciphertext CT ′ and a secret value T SK, then outputs a bit b
and a status value st.
Decrypt′(PP, CT, CT ′, T SK) → M: The decryption algo-
rithm takes as input the public parameters PP, a cipher-
text CT , a transformed ciphertext CT ′ and a secret value
T SK, then runs Verify(PP, CT ′, T SK) to obtain b and st.
If b = 1, it outputs M. If b = 0, it returns an error symbol ⊥.
Correctness. For all (PP, M SK) ←Setup(1λ, U), SKI ←
KeyGen(PP, M SK , Ikey), CT ←Encrypt(PP, M, Ienc),
(T SK , T KI) ←GenTK(PP, SKI), CT ′ ←Transformout

(PP, CT, T KI). Consider two cases:
Case 1: f (Ikey , Ienc) = 1. Decrypt(PP, SKI , CT) →

M , and Decrypt′(PP, CT, CT ′, T SK)→ M if Verify(PP,
CT ′, T SK) returns 1.

Case 2: f (Ikey , Ienc) �= 1. Decrypt(PP, SKI , CT) and
Decrypt′(PP, CT, CT ′, T SK) output ⊥.

Our model of VO-ABE can be considered in both KP and
CP settings. A user is able to generate the transform key by
himself if it is necessary to outsource decryption. The verifica-
tion algorithm is defined for the final decryption executed by
the user. After receiving the transformed ciphertext, the user
verifies the correctness of the transform done by the proxy
and obtains an error symbol if the verification fails. If the
transformed ciphertext passes the verification, the user takes

2124 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 10, OCTOBER 2015

the status from the verification algorithm and continues to run
the decryption algorithm, then can successfully recover the
plaintext.

In the following, we describe security games for VO-ABE
and present the formal definitions. Apart from the key gen-
eration oracle OKeyGen(·) defined before, we need to provide
the definitions of a transform key generation and decryption
oracles for the security model of VO-ABE.
Oracles Descriptions. All the oracles are given access to
the public parameters and a master secret key (PP, M SK),
however, we omit them in descriptions for simplicity.
1) The decryption oracle ODecrypt(·, ·) takes as input
Ikey, CT and returns the output generated from:
KeyGen(PP, M SK , Ikey) → SKI ; Decrypt(PP, SKI , CT)
→ M/⊥.
2) The transform key generation oracle OGenTK(·)
takes as input Ikey and returns T KI generated from:
KeyGen(PP, M SK , Ikey) → SKI ; GenTK(PP, SKI) →
(T SK , T KI).
3) The decryption oracle ODecrypt′(·, ·, ·) takes as input
Ikey, CT, CT ′ and returns the output generated from:
KeyGen(PP, M SK , Ikey) → SKI , GenTK(PP, SKI)→
(T SK , T KI), Decrypt′(PP, CT, CT ′, T SK)→ M/⊥.
Ex pIND

A,�VOABE
(1λ, U):

• Setup. The challenger runs the setup algorithm to obtain
(PP, M SK) and returns PP to the adversary A.

• Phase 1. A is given access to OKeyGen (·),OGenTK (·).
• Challenge. A submits two (equal length) messages M0,

M1 and I ∗enc to the challenger, where f (Ikey, I ∗enc) �= 1 for
any Ikey issued to OKeyGen(·) in Phase 1. The challenger

picks b
R←− {0, 1} and sends to A the challenge ciphertext

CT ∗ generated from: Encrypt(PP, Mb, I ∗enc)→ CT ∗.
• Phase 2. A is given access to the oracles as in Phase 1

with the restriction that f (Ikey , I ∗enc) �= 1 for any Ikey

issued to OKeyGen(·).
• Guess. A outputs a guess b′ of b. The experiment

returns 1 if and only if b′ = b.

Definition 12 (Data Privacy): A VO-ABE scheme is
IND-CPA secure if for any PPT adversary A, the advantage
in this security game:

∣
∣
∣
∣Pr

[
Ex pIND

A,�VOABE
(1λ, U) = 1

]
− 1

2

∣
∣
∣
∣ ≤ negl(λ)

Selective Security: A VO-ABE scheme is selectively secure
if we add an Init stage before Setup where the adversary
commits to the challenge I ∗enc.
Ex pSOUND

A,�VOABE
(1λ, U):

• Setup. The challenger runs the setup algorithm to obtain
(PP, M SK) and sends PP to the adversary A.

• Phase 1. A is given access to the oracles OKeyGen(·),
OGenTK(·), ODecrypt(·, ·), ODecrypt′(·, ·, ·).

• Challenge. A submits a message M∗ and I ∗enc
to the challenger. The challenger computes Encrypt
(PP, M∗, I ∗enc) → CT ∗ and returns to A the challenge
ciphertext CT ∗.

• Phase 2. A is given access to the oracles as in Phase 1.

• Forge. A outputs I ∗key and a transformed ciphertext CT ∗′.
The challenger obtains T SK for I ∗key by running
KeyGen(PP, M SK , I ∗key) → SKI and GenTK(PP,
SKI) → (T SK , T KI). A wins the game if Verify
(PP, CT ∗′, T SK) returns 1 and
Decrypt′(PP, CT ∗, CT ∗′, T SK) /∈ {M∗,⊥}.

Remark: Without loss of generality, we consider the above
game under the following assumptions:
1) The adversary A does not submit Ikey to OGenTK(·) if it
has issued the same Ikey to OKeyGen(·), since A can generate
the transform key by itself.
2) f (I ∗key , I ∗enc) = 1. For the case of f (I ∗key , I ∗enc) �= 1,
Decrypt′(PP, CT ∗, CT ∗′, T SK) outputs ⊥ and A fails the
game.
3) A has submitted I ∗key to the oracle OGenTK(·) before it
outputs I ∗key and CT ∗′, i.e., A obtains the transform key T KI

for I ∗key and the challenger owns the corresponding T SK . This
assumption is reasonable since the challenger can obtain T SK
as in the response of the transform key generation oracle if A
has not issued the transform key query for I ∗key .

Definition 13 (Verification Soundness): A VO-ABE scheme
meets the verification soundness if the probability for any PPT
adversary to win the above game is negligible.

IV. ABE SCHEME WITH VERIFIABLE DECRYPTION

Our ABE scheme with verifiable decryption has three build-
ing blocks: an AB-KEM, a symmetric-key encryption scheme
and a commitment scheme. Our ciphertext consists of the
ciphertext part of the AB-KEM and the ciphertext generated
from combining a hybrid encryption and a commitment of the
plaintext by bundling the same randomness, which is used for
verification.

Let �KEM = (Setup, KeyGen, Encrypt, Decrypt) be an
AB-KEM and let �SKE = (Gen, Enc, Dec) be a symmetric-
key encryption scheme. Let KDF denote a key derivation func-
tion with the output length �, where � is selected according to
the length of the private key in the symmetric-key encryption
scheme. Given a commitment scheme (Commit, Decommit),
we construct an ABE scheme with verifiable decryption as
follows.

• Setup(1λ, U): The algorithm runs Setup(1λ, U) →
(P K , M SK), and chooses the key derivation function
KDF with the output length �, then publishes the public
parameters PP = (P K , KDF,�) and M SK .

• KeyGen(PP, M SK , Ikey): The key generation algorithm
runs KeyGen (P K , M SK , Ikey) → SK, and outputs
SKI = (Ikey, SK).

• Encrypt(PP, M, Ienc): Parse PP = (P K , KDF,�).
The encryption algorithm runs Encrypt (P K , Ienc) →
(DK, C). It chooses a random coin r , sets Ĉ =
Commitr (M), and runs Enc(KDF(DK, �), M ‖ r)→ C ,
then outputs the ciphertext CT = (Ienc, C, C, Ĉ).

• Decrypt(PP, SKI , CT): Parse PP = (P K , KDF, �),
CT = (Ienc, C, C, Ĉ) and SKI = (Ikey, SK). The
decryption algorithm runs Decrypt (SK , C) → DK and
Dec(KDF(DK, �), C) → M ‖ r , then outputs M if
Decommitr (Ĉ) = M , and an error symbol ⊥ otherwise.

LIN et al.: REVISITING ABE WITH VERIFIABLE OUTSOURCED DECRYPTION 2125

Correctness. For all (PP, M SK) ← Setup(1λ, U), SKI←
KeyGen(PP, M SK , Ikey), CT ← Encrypt(PP, M, Ienc),

where SKI = (Ikey , SK), CT = (Ienc, C, C, Ĉ) and
(DK, C)← Encrypt(P K , Ienc), Ĉ = Commitr (M), C ←
Enc(KDF(DK, �), M ‖ r). Consider two cases:

Case 1: f (Ikey , Ienc) = 1. Decrypt(SK , C) → DK,
Dec(KDF(DK, �), C) → M ‖ r . If Decommitr (Ĉ) = M ,
Decrypt(PP, SKI , CT) → M; otherwise, Decrypt(PP,
SKI , CT) outputs the error symbol ⊥.

Case 2: f (Ikey, Ienc) �= 1. Decrypt(PP, SKI , CT) outputs
the error symbol ⊥.

For convenience, we denote the above ABE scheme as
BasicABE. We will construct our VO-ABE scheme based on
BasicABE. Now we describe how security of the AB-KEM,
the symmetric-key encryption scheme, the key derivation
function and the commitment scheme implies the security of
BasicABE. One of our main results is provided as follows.

Theorem 1: Suppose that the AB-KEM �KEM is
IND-CPA secure, the key derivation function KDF is secure,
the symmetric-key encryption scheme �SKE is semantically
secure and the commitment scheme (Commit, Decommit)
is computationally hiding. Then the constructed scheme
BasicABE is IND-CPA secure.

Proof: To prove the theorem, we consider four games:

• Game0: The real IND-CPA security game of ABE, where
the challenge ciphertext CT ∗ = (I ∗enc, C∗, C

∗
, Ĉ∗) is

generated from the procedure that the challenger executes

Encrypt(P K , I ∗enc) → (DK, C∗), then picks b
R←− {0, 1}

and a random r , finally computes Ĉ∗ = Commitr (Mb)
and runs Enc(KDF(DK, �), Mb ‖ r)→ C

∗
.

• Game1: Same as Game0 except that the challenger
runs Enc(NK, Mb ‖ r) → C

∗
where NK is generated

randomly from the key generation algorithm Gen.
• Game2: Same as Game1 except that the challenger runs

Enc(NK, 0|Mb‖r |)→ C
∗

for the challenge ciphertext.
• Game3: Same as Game2 except that the challenger com-

putes Ĉ∗ = Commitr (0|Mb|) for the challenge ciphertext.

We can show the computational indistinguishability between
the pairs Game0 and Game1, Game1 and Game2, Game2
and Game3, respectively, which implies that Game3 is
computationally indistinguishable from Game0. Since the
challenge ciphertext in Game3 contains no information about
the messages submitted by the adversary, we conclude that the
advantage of the adversary in Game3 is negligible. Thus the
advantage of the adversary in the real game is negligible.
We prove this theorem by the following lemmas.

Lemma 1: Suppose that the AB-KEM �KEM = (Setup,
KeyGen, Encrypt, Decrypt) is IND-CPA secure, and the key
derivation function KDF is secure. Then Game0 and Game1
are computationally indistinguishable.

Proof: Consider the following game:
Game′: Same as Game0 except that the challenger runs

Enc(KDF(RK, �), Mb ‖ r) → C
∗

where RK represents a
random session key of the AB-KEM.

We first show that IND-CPA security of the AB-KEM
implies that Game′ is computationally indistinguishable from
Game0.

Suppose there exists a PPT adversary A that can distinguish
Game0 and Game′ with non-negligible probability. We build
an algorithm B to break IND-CPA security of the AB-KEM.
B runs A executing the following steps.
• Setup. The simulator B receives the public key P K from

the challenger, then selects the key derivation function
KDF with the output length �, and sends the public
parameters PP = (P K , KDF,�) to A.

• Phase 1. B forwards any private key query from A to its
own key generation oracle and returns to A the answer.

• Challenge. A submits (equal length) M0, M1 and I ∗enc
where f (Ikey, I ∗enc) �= 1 for any Ikey queried in Phase 1.
B sends I ∗enc to the challenger. The challenger runs

Encrypt(P K , I ∗enc)→ (DK, C∗), then picks β
R←− {0, 1},

and returns (KKβ, C∗) to B. If β = 0, KK0 = DK;
otherwise, KK1 = RK where RK is a random session
key. B selects b

R←− {0, 1} and a random coin r , then com-
putes Ĉ∗ = Commitr (Mb), and runs Enc(KDF(KKβ, �),

Mb ‖ r) → C
∗
. Finally B sends CT ∗ = (I ∗enc, C∗,

C
∗
, Ĉ∗) to A as the challenge ciphertext.

• Phase 2. A adaptively issues private key queries with
the restriction that f (Ikey, I ∗enc) �= 1 for any queried
Ikey , and B proceeds as in Phase 1.

• Guess. A outputs its guess b′ ∈ {0, 1}. If b′ = b,
B outputs 0; otherwise, B outputs 1.

We can see that if β = 0, Game0 has been properly
simulated; otherwise, Game′ has been properly simulated.
Hence, if the adversary A can distinguish Game0 and
Game′ with non-negligible probability, we can construct an
algorithm B to attack the IND-CPA secure AB-KEM with
non-negligible advantage. Then the proof of the computa-
tional indistinguishability between Game0 and Game′ is
completed.

Since the security of the KDF implies that KDF(RK, �) is
computationally indistinguishable from a randomly generated
key of the symmetric-key encryption scheme, we can show
that Game′ and Game1 are computationally indistinguishable
by similar analysis as above. Therefore, we conclude that
Game0 and Game1 are computationally indistinguishable. �

Lemma 2: Suppose the symmetric-key encryption scheme
�SKE = (Gen, Enc, Dec) is semantically secure. Then
Game1 and Game2 are computationally indistinguishable.

Proof: Suppose there exists a PPT adversary A that
can distinguish Game1 and Game2 with non-negligible
probability. We build an algorithm B to break the semantical
security of the symmetric-key encryption scheme. B runs A
executing the following steps.
• Setup. After receiving the security parameter from the

challenger, the simulator B calls Setup(1λ, U) to obtain
(P K , M SK) and sends P K to A.

• Phase 1. A issues private key queries. Since B knows
the master secret key M SK, it can answer any queries.

• Challenge. A submits (equal length) M0, M1 and I ∗enc
where f (Ikey, I ∗enc) �= 1 for any Ikey queried in Phase 1.
B runs Encrypt(P K , I ∗enc) → (DK, C∗). After that,

B selects b
R←− {0, 1} and a random coin r , then

computes Ĉ∗ = Commitr (Mb), and sends M0 = Mb ‖ r,

2126 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 10, OCTOBER 2015

M1 = 0|Mb‖r | to the challenger. The challenger runs

Gen(1λ) → NK, and picks β
R←− {0, 1}, then encrypts

the message Mβ by running Enc(NK, Mβ) → C
∗

and returns to B the ciphertext C
∗
. B sends CT ∗ =

(I ∗enc, C∗, C
∗
, Ĉ∗) to A as the challenge ciphertext.

• Phase 2. A adaptively issues private key queries with the
restriction that f (Ikey, I ∗enc) �= 1 for any queried Ikey , and
B responds as in Phase 1.

• Guess. A outputs its guess b′ ∈ {0, 1}. If b′ = b,
B outputs 0; otherwise, B outputs 1.

We can see that if β = 0, Game1 has been properly
simulated; otherwise, Game2 has been properly simulated.
Hence, if the adversary A can distinguish Game1 and Game2
with non-negligible probability, we can construct an algorithm
B to attack the semantically secure symmetric-key encryption
scheme with non-negligible advantage. �

Lemma 3: Suppose that the commitment scheme
(Commit, Decommit) is computationally hiding. Then
Game2 and Game3 are computationally indistinguishable.

Proof: Suppose there is a PPT adversary A that can dis-
tinguish Game2 and Game3 with non-negligible probability.
We construct an algorithm B to break the computational hiding
of the commitment scheme. Let S be the sender corresponding
to B as the receiver in the commitment scheme. S and B are
given common parameters. The simulator B runs A executing
the following steps.
• Setup. B calls Setup(1λ, U) to obtain (P K , M SK) and

sends P K to A.
• Phase 1. B answers private key queries issued by A.
• Challenge. A submits (equal length) M0, M1 and I ∗enc

where f (Ikey, I ∗enc) �= 1 for any Ikey issued in Phase 1.

B picks b
R←− {0, 1}, and sets M0 = Mb, M1 = 0|Mb|, then

sends (M0, M1) to S. After that, S picks β
R←− {0, 1}

and selects a random r , then returns the commitment
Ĉ∗ = Commitr (Mβ) to B. The simulator B runs
Encrypt(P K , I ∗enc) → (DK, C∗) and encrypts the mes-
sage 0|Mb‖r | by running Enc(NK, 0|Mb‖r |)→ C

∗
, where

NK ← Gen(1λ), then sends CT ∗ = (I ∗enc, C∗, C
∗
, Ĉ∗)

to A as the challenge ciphertext.
• Phase 2. A adaptively issues private key queries satis-

fying that f (Ikey, I ∗enc) �= 1 for any queried Ikey , and
B responds properly.

• Guess. A outputs a guess bit b′ ∈ {0, 1}. If b′ = b,
B outputs 0; otherwise, B outputs 1.

If β = 0, B has simulated Game2 properly; oth-
erwise, B has properly simulated Game3. Thus, if the
adversary A has a non-negligible probability to distinguish
Game2 and Game3, the algorithm B can attack the computa-
tional hiding of the commitment scheme with non-negligible
advantage. �

Combining all the above discussions, we complete the proof
of Theorem 1. �

V. GENERIC CONSTRUCTION OF VO-ABE

The BasicABE proposed in Section IV is constructed based
on an AB-KEM, a symmetric-key encryption scheme and a
commitment scheme. Let T = (T1, T2) be an endomorphism

transform of which the inverse algorithm is denoted as T ′, and
suppose the decryption algorithm of the AB-KEM satisfies that
Decrypt(T2(SK), C) = T2(Decrypt(SK , C)). We construct a
VO-ABE scheme based on BasicABE. The algorithms (Setup,
KeyGen, Encrypt, Decrypt) are the same as in BasicABE.
The remaining algorithms are described as follows.

• GenTK(PP, SKI): Parse SKI = (Ikey , SK). The
transform key generation algorithm runs T (SK) →
(δ, T2(SK)), where δ is selected randomly, then sets
T KI = (Ikey, T2(SK)), T SK = δ, and returns
(T SK , T KI).

• Transformout(PP, CT, T KI): The transform algorithm
parses CT = (Ienc, C, C, Ĉ) and T KI = (Ikey , T2(SK)),
runs Decrypt(T2(SK), C) → C ′, and returns CT ′ =
(C ′, C

′ = C, Ĉ ′ = Ĉ) as the transformed ciphertext.
• Verify(PP, CT ′, T SK): Parse PP = (P K ,KDF,�). The

verification algorithm runs T ′(T SK , C ′) → DK and
Dec(KDF(DK, �), C

′
) → M ‖ r . If Commitr (M) = Ĉ ′

holds, it outputs b = 1 and st = (M, r); otherwise, it
returns b = 0.

• Decrypt′(PP, CT, CT ′, T SK): The decryption algorithm
parses CT = (Ienc, C, C, Ĉ) and CT ′ = (C ′, C

′
, Ĉ ′).

If C �= C
′

or Ĉ �= Ĉ ′, the algorithm outputs ⊥. Other-
wise it runs Verify(PP, CT ′, T SK) to obtain b and st .
If b = 1, it outputs M . If b = 0, it returns ⊥.

Correctness. For all (PP, M SK) ←Setup (1λ, U), SKI ←
KeyGen(PP, M SK , Ikey), CT ← Encrypt(PP, M, Ienc).

Here PP = (P K , KDF,�), SKI = (Ikey , SK), CT =
(Ienc, C, C, Ĉ) where (DK, C)← Encrypt(P K , Ienc), Ĉ =
Commitr (M), C ← Enc(KDF(DK, �), M ‖ r). For all (T SK ,
T KI) ← GenTK(PP, SKI) with T KI = (Ikey , T2(SK)),
T SK = δ, and CT ′ ← Transformout(PP, CT, T KI), where
CT ′ = (C ′, C, Ĉ) and C ′ = Decrypt(T2(SK), C). Consider
two cases:

Case 1: f (Ikey, Ienc) = 1.

C ′ = Decrypt(T2(SK), C)= T2(Decrypt(SK , C))= T2(DK).

Here the second equality holds for the assumed property of the
decryption algorithm of the AB-KEM. Since T ′ is the inverse
algorithm of T , it holds that

T ′(T SK , C ′) = T ′(δ, C ′) = T ′(δ, T2(DK)) = DK.

Then M and r are generated from Dec(KDF(DK, �), C) →
M ‖ r. If Commitr (M) = Ĉ , Verify(PP, CT ′, T SK) returns 1
and Decrypt′(PP, CT, CT ′, T SK) outputs M .

Case 2: f (Ikey , Ienc) �= 1. Decrypt(PP, SKI , CT) and
Decrypt′ (PP, CT, CT ′, T SK) output ⊥.

Our construction requires that the decryption algorithm
of the AB-KEM has some homomorphic property,
i.e., for an endomorphism transform T = (T1, T2),
Decrypt(T2(SK), C) = T2(Decrypt(SK , C)). If we consider
an endomorphism transform defined on a multiplicative
group as described in Section II, this homomorphic property
is exactly multiplicative homomorphism. Specifically,
if the transform for a private key SK is defined as
T2(SK) = SK z by a random value z, it holds that
Decrypt((SK)z, C) = (Decrypt(SK , C))z . Actually, most

LIN et al.: REVISITING ABE WITH VERIFIABLE OUTSOURCED DECRYPTION 2127

existing pairing-based AB-KEMs (KP or CP) satisfy
the property of multiplicative homomorphism. Thus, our
technique can be applied to most existing AB-KEMs in both
KP and CP settings.

We have the following security result of the above generic
construction of VO-ABE.

Theorem 2: Assume that BasicABE is IND-CPA secure
and the commitment scheme (Commit, Decommit) is com-
putationally binding. Then the above constructed VO-ABE
scheme is IND-CPA secure and meets the verification
soundness.

Proof: We first prove that IND-CPA security of
BasicABE implies IND-CPA security of the VO-ABE scheme.

Suppose there exists a PPT adversary A that has a
non-negligible advantage to attack IND-CPA security of the
VO-ABE scheme. We can build an algorithm B to attack
IND-CPA secure BasicABE with non-negligible advantage.
The simulator B runs A as a subroutine in the following steps.
• Setup. B forwards PP to A from the challenger.
• Phase 1. A adaptively issues private key and trans-

form key queries. B answers private key queries by
using its own key generation oracle. For any trans-
form key query on Ikey , B calls Setup(1λ, U) →
(P K ′, M SK ′), KeyGen(P K ′, M SK ′, Ikey) → SK ′, and
runs T (SK ′) → (δ′, T2(SK ′)), then returns to A the
simulated transform key T KI = (Ikey, T2(SK ′)).

• Challenge. A submits (equal length) M0, M1 and I ∗enc
where f (Ikey , I ∗enc) �= 1 for any Ikey in private key
queries above. B forwards them to the challenger and
obtains CT ∗. Then B sends CT ∗ to A as the challenge
ciphertext.

• Phase 2. A continues to adaptively issue private key
and transform key queries with the restriction that
f (Ikey, I ∗enc) �= 1 for any Ikey in private key queries.
B answers the private key queries as in Phase 1. For
any transform key query on Ikey , if f (Ikey, I ∗enc) �= 1,
B obtains the private key SK from its key generation
oracle and runs T (SK) → (δ, T2(SK)), then returns
T KI = (Ikey, T2(SK)) to A; otherwise, B responds as
in Phase 1.

• Guess. A outputs its guess b′ of b. Then B outputs b′.
Since the public output T2(·) of the endomorphism trans-

form T is computationally indistinguishable between different
inputs, A can distinguish the simulated transform key from
the real one with at most negligible probability. Thus, except
with negligible probability, the algorithm B has perfectly
simulated the IND-CPA security game of the constructed
VO-ABE scheme for the adversary A. If A can win
the IND-CPA security game of the VO-ABE scheme with
non-negligible advantage, B can attack the IND-CPA secure
BasicABE with non-negligible advantage.

Below we show that IND-CPA security of BasicABE
and the computational binding of the commitment scheme
(Commit, Decommit) imply the verification soundness of the
VO-ABE scheme.

Assume there is a PPT adversary A that can win the
verifiable game of the VO-ABE scheme with non-negligible
probability. We can construct an algorithm B to attack

the computational binding of the commitment scheme with
non-negligible probability. Let R be the receiver and B is the
sender in the commitment scheme. The simulator B runs A
in the following steps.
• Setup. B calls the setup algorithm of the constructed

VO-ABE scheme to obtain (PP, M SK) and sends
PP to A.

• Phase 1. A is given access to OKeyGen(·),OGenTK(·),
ODecrypt(·, ·), ODecrypt′(·, ·, ·). Since B knows the master
secret key M SK, it is able to provide all these oracles.

• Challenge. A submits a message M∗ and I ∗enc.
B encrypts the message M∗ with I ∗enc by the encryption
algorithm of the VO-ABE scheme to obtain CT ∗ =
(I ∗enc, C∗, C

∗
, Ĉ∗), where Ĉ∗ = Commitr (M∗). Then

B returns CT ∗ to A and sends Ĉ∗ to R.
• Phase 2. A is given access to the oracles as in Phase 1.
• Forge. A outputs I ∗key and a transformed ciphertext

CT ∗′ = (C∗′, C
′
, Ĉ ′) where C

′ = C
∗
, Ĉ ′ = Ĉ∗.

Note that A has issued I ∗key to OGenTK(·) and obtains

the transform key T KI . B owns the corresponding
T SK . If Verify(PP, CT ∗′, T SK) returns 1 and (M ′, r ′),
B outputs (M ′, r ′); otherwise, B outputs a random tuple.

The IND-CPA security of BasicABE guarantees that for
any PPT adversary A, the random r used to commit to M∗ is
computationally indistinguishable from a uniformly distributed
random variable. Let Pr[A forges] denote the probability for A
to win the game of verification soundness. Let Pr[B succeeds]
be the probability that B outputs (M ′, r ′) satisfying M ′ �= M∗
and

Commitr ′ (M ′) = Ĉ∗ = Commitr (M∗).

Denote Q as the space of all the commitment values. Then
|Q| ∈ �(2λ). We have

Pr[B succeeds] = Pr[A forges] + (1− Pr[A forges]) · 1

|Q|
≥ Pr[A forges]

(

1− 1

|Q|
)

.

Suppose that A wins the game with non-negligible probability,
i.e., Pr[A forges] is non-negligible. Then Pr[B succeeds] is
non-negligible, which contradicts to computational binding of
the commitment scheme. �

Remark 1: Note that the security of the resulting VO-ABE
scheme depends on the security of the building blocks, so if
the underlying AB-KEM is selectively/adaptively secure, the
resulting VO-ABE scheme is also selectively/adaptively secure.
Namely, security property will be actually inherited by the
resulting VO-ABE scheme. We remark that one should choose
the proper endomorphism transform accordingly, which can be
implemented on groups of either prime or composite orders.

VI. OUR INSTANTIATION

In this section, we instantiate our generic construction with
an AB-KEM [6], the one-time pad and the Pedersen commit-
ment scheme [27]. For simplicity and for a fair comparison
with the LDGW-scheme [3], we only present a concrete
VO-ABE scheme based on the selectively secure AB-KEM [6]
and just discuss CP-ABE here. The same technique is available

2128 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 10, OCTOBER 2015

for KP-ABE since our construction does not require the
underlying ABE to be KP or CP, as explained in Section V.
We note that one can adapt our technique to an adaptively
secure AB-KEM [7] and achieves an adaptively secure
VO-ABE scheme.

Let e : G×G→ GT be a bilinear map, where G and GT

are multiplicative cyclic groups of prime order p, where
p ∈ �(2λ). We use a specific endomorphism transform
T : X → Z

∗
p × X defined on a cyclic group X of prime

order p, where a detailed description is provided in Section II.
Our concrete VO-ABE scheme is described as follows.
• Setup(1λ, U): Choose g, h, w

R←− G and α, a
R←− Z

∗
p .

Select random values {si ∈ Z
∗
p : ∀i ∈ U} and a collision-

resistant hash function H : {0, 1}∗ → Z
∗
p . Adopt the

key derivation function KDF with the output length �
and finally set PP = (g, h, w, ga, e(g, g)α, {Ti = gsi :
∀i ∈ U}, H, KDF,�), M SK = α. Return (PP, M SK).

• KeyGen(PP, M SK , S): Pick t
R←− Z

∗
p . The private key

SK = (K = gαgat , K0 = gt , Ki = T t
i , ∀i ∈ S). Return

SKI = (S, SK).
• Encrypt(PP, M ∈ {0, 1}∗, A): Let A = (A, ρ) be a

Linear Secret Sharing Scheme (LSSS) access structure,
where A is an m × n matrix and ρ : [m] → U is a map
from each row Ai of A to an attribute ρ(i). Choose a ran-

dom vector �v = (s, v2, · · · , vn) ∈ Z
∗n
p . Select ri

R←− Z
∗
p,

i ∈ [m]. The ciphertext of the AB-KEM is

C = (E = gs, Ci = ga Ai ·�vT−ri
ρ(i), Di = gri , ∀i ∈ [m])

and the session key is DK = e(g, g)αs . Choose a random

r ∈ {0, 1}∗, and set Ĉ = h H(M)wH(r), C = (M ‖ r) ⊕
KDF(DK, �). The ciphertext is CT = (A, C, C, Ĉ).

• Decrypt(PP, SKI , CT): If S does not satisfy A,
output ⊥; otherwise, there exist ωi ∈ Z

∗
p such that∑

ρ(i)∈S ωi Ai = (1, 0, · · · , 0). Compute

DK = e(E, K)

�ρ(i)∈S(e(Ci , K0) · e(Kρ(i), Di))ωi
= e(g, g)αs

and C⊕ KDF(DK, �) = M ‖ r . If h H(M)wH(r) = Ĉ ,
output the message M; otherwise, output ⊥.

• GenTK(PP, SKI): Run the endomorphism transform
T on SK and obtain T (SK) = (z, T2(SK)), where

z
R←− Z

∗
p and the public output T2(SK) = SK z =

(K z, K z
0 , K z

i , ∀i ∈ S). Set the transform key T KI =
(S, K ′ = K z, K ′0 = K z

0 , K ′i = K z
i , ∀i ∈ S) and

T SK = z. Return (T SK , T KI).
• Transformout(PP, CT, T KI): If S does not satisfy A,

output ⊥; otherwise, there exist ωi ∈ Z
∗
p such that∑

ρ(i)∈S ωi Ai = (1, 0, · · · , 0). Compute

C ′ = e(E, K ′)
�ρ(i)∈S(e(Ci , K ′0) · e(K ′ρ(i), Di))ωi

= e(g, g)αsz,

and output the transformed ciphertext as CT ′ =
(C ′, C

′ = C, Ĉ ′ = Ĉ).
• Verify(PP, CT ′, T SK): By using the inverse trans-

form T ′, we obtain

T ′(T SK , C ′) = C ′(1/T S K) = C ′(1/z) = e(g, g)αs = DK.

TABLE I

EXPONENTIAL AND PAIRING OPERATIONS

Compute C
′⊕KDF(DK, �)=M ‖r . If h H(M)wH(r) = Ĉ ′

holds, output b = 1 and st = (M, r); otherwise,
output b = 0.

• Decrypt′(PP, CT, CT ′, T SK): Parse CT = (A, C, C, Ĉ)

and CT ′ = (C ′, C
′
, Ĉ ′). If C �= C

′
or Ĉ �= Ĉ ′,

output ⊥; otherwise, run Verify(PP, CT ′, T SK) to
obtain b and st . If b = 1, return M . If b = 0, return ⊥.

Suppose the decisional q-parallel BDHE assumption [6]
holds. The AB-KEM used in the above construction is
selectively IND-CPA secure. Under the Discrete-Logarithm
assumption, the Pedersen commitment scheme is perfectly
hiding and computationally binding. According to Theorem 1
and Theorem 2, we have

Theorem 3: Suppose that the decisional q-parallel BDHE
assumption holds and the key derivation function KDF
is secure. Then the above constructed ABE scheme with
outsourced decryption is selectively IND-CPA secure and
meets the verification soundness.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our instan-
tiation of CP-ABE scheme with verifiable outsourced decryp-
tion. For comparing the efficiency of our scheme to the
LDGW-scheme [3], we tabulate the exponential and pairing
operations in Table I.

As shown in Table I, our scheme only requires
nearly half of the modular exponentiations used in the
LDGW-scheme [3] during the encryption phase and needs
one less modular exponentiation in GT than [3] during
the final decryption phase. The computation cost for the
third-party service to transform a standard ABE ciphertext in
our scheme is half of that in [3].

For further comparison of the efficiency, we implement
the schemes in Charm [28] with a 224-bit MNT elliptic
curve from the Stanford Pairing-Based Crypto library [29].
Our implementation uses a laptop with a 2.60 GHz
Intel Core i5-3320M CPU and 4GB RAM running 64-bit
Ubuntu 14.04. The programming language is Python 3.4.
The key derivation function used here is KDF1 defined in
ISO-18033-2 [30]. We compare the complexity of our
proposed ABE scheme with the LDGW-scheme [3] in the
size of a ciphertext, the encryption time, the transform time
and the time of decrypting a transformed ciphertext. In order
to illustrate how the complexity of ciphertext policy affects
on the performance, we generate 100 different policies in the
form of (a1 and a1 and · · · and aN) as in [3], where each ai

LIN et al.: REVISITING ABE WITH VERIFIABLE OUTSOURCED DECRYPTION 2129

Fig. 1. Performance Comparisons. (a) ABE Encryption Time. (b) ABE
Ciphertext Size. (c) Transform Time. (d) Final Decryption Time.

is an attribute and 1 ≤ N ≤ 100. We repeat the experiment
100 times and take the average values as the final results.

Fig. 1 (a) and (b) show that under the same policy, the
encryption time and the size of a standard ABE ciphertext
of our scheme are far less than [3]. Specifically, a message
encrypted under a policy with 100 attributes needs
around 1 second and the size of the generated ciphertext
is around 16.68 KB, which are both nearly half of the
counterparts in [3]. Fig. 1 (c) illustrates that the third-party
service for our scheme just needs half of the time used in [3]
to transform a standard ABE ciphertext. For Fig. 1 (d), the
final decryption time is slightly more than half of that in [3].
All our experimental results are coincident with the theoretic
analysis presented above.

Therefore, we conclude that our instantiation of ABE with
verifiable outsourced decryption is more efficient than the
existing scheme [3].

ACKNOWLEDGMENT

The authors thank Junfeng Fan for helpful discussions and
the anonymous reviewers from many valuable comments.

REFERENCES

[1] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proc.
EUROCRYPT, 2005, pp. 457–473.

[2] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the decryption
of ABE ciphertexts,” in Proc. USENIX Secur. Symp., 2011, p. 34.

[3] J. Lai, R. H. Deng, C. Guan, and J. Weng, “Attribute-based encryp-
tion with verifiable outsourced decryption,” IEEE Trans. Inf. Forensics
Security, vol. 8, no. 8, pp. 1343–1354, Aug. 2013.

[4] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Symp. Secur. Privacy, May 2007,
pp. 321–334.

[5] L. Cheung and C. Newport, “Provably secure ciphertext policy ABE,”
in Proc. ACM Conf. Comput. Commun. Secur., 2007, pp. 456–465.

[6] B. Waters, “Ciphertext-policy attribute-based encryption: An expres-
sive, efficient, and provably secure realization,” in Proc. Public Key
Cryptography, 2011, pp. 53–70.

[7] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption,” in Proc. EUROCRYPT, 2010,
pp. 62–91.

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. ACM
Conf. Comput. Commun. Secur., 2006, pp. 89–98.

[9] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryption with
non-monotonic access structures,” in Proc. 14th ACM Conf. Comput.
Commun. Secur., 2007, pp. 195–203.

[10] R. L. Rivest, “All-or-nothing encryption and the package transform,” in
Proc. 4th Int. Workshop Fast Softw. Encryption, 1997, pp. 210–218.

[11] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai,
“Exposure-resilient functions and all-or-nothing transforms,” in Proc.
EUROCRYPT, 2000, pp. 453–469.

[12] N. Attrapadung, J. Herranz, F. Laguillaumie, B. Libert, E. de Panafieu,
and C. Ràfols, “Attribute-based encryption schemes with constant-size
ciphertexts,” Theoretical Comput. Sci., vol. 422, pp. 15–38, Mar. 2012.

[13] S. Hohenberger and B. Waters, “Attribute-based encryption with fast
decryption,” in Proc. Public-Key Cryptography, 2013, pp. 162–179.

[14] B. Chevallier-Mames, J.-S. Coron, N. McCullagh, D. Naccache, and
M. Scott, “Secure delegation of elliptic-curve pairing,” in Proc. 9th Int.
Conf. Smart Card Res. Adv. Appl., 2010, pp. 24–35.

[15] B. G. Kang, M. S. Lee, and J. H. Park, “Efficient delegation of pairing
computation,” Cryptol. ePrint Arch., Rep. 2005/259, 2005. [Online].
Available: http://eprint.iacr.org/

[16] P. P. Tsang, S. S. Chow, and S. W. Smith, “Batch pairing delegation,”
in Proc. 2nd Int. Workshop Adv. Inf. Comput. Secur., 2007, pp. 74–90.

[17] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic
proxy cryptography,” in Proc. EUROCRYPT, 1998, pp. 127–144.

[18] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
ACM Trans. Inf. Syst. Secur., vol. 9, no. 1, pp. 1–30, Feb. 2006.

[19] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Proc.
CRYPTO, 2010, pp. 465–482.

[20] K.-M. Chung, Y. Kalai, and S. Vadhan, “Improved delegation of com-
putation using fully homomorphic encryption,” in Proc. CRYPTO, 2010,
pp. 483–501.

[21] J. Li, X. Chen, J. Li, C. Jia, J. Ma, and W. Lou, “Fine-grained access
control system based on outsourced attribute-based encryption,” in Proc.
18th Eur. Symp. Res. Comput. Secur. (ESORICS), 2013, pp. 592–609.

[22] J. Li, X. Huang, J. Li, X. Chen, and Y. Xiang, “Securely outsourc-
ing attribute-based encryption with checkability,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 8, pp. 2201–2210, Aug. 2013.

[23] S. Hohenberger and B. Waters, “Online/offline attribute-based encryp-
tion,” in Proc. Public-Key Cryptography, 2014, pp. 293–310.

[24] J. Katz and Y. Lindell, Introduction to Modern Cryptography
(Chapman & Hall/CRC Cryptography and Network Security Series).
London, U.K.: Chapman & Hall, 2007.

[25] H. Krawczyk, “Cryptographic extraction and key derivation: The HKDF
scheme,” in Proc. CRYPTO, 2010, pp. 631–648.

[26] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formu-
las on ciphertexts,” in Proc. 2nd Theory Cryptography Conf., 2005,
pp. 325–341.

[27] T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-
able secret sharing,” in Proc. CRYPTO, 1991, pp. 129–140.

[28] J. A. Akinyele et al., “Charm: A framework for rapidly prototyping
cryptosystems,” J. Cryptograph. Eng., vol. 3, no. 2, pp. 111–128, 2013.

[29] B. Lynn, The Stanford Pairing Based Crypto Library. [Online]. Avail-
able: http://crypto.stanford.edu/pbc

[30] V. Shoup, Information Technology—Security Techniques—Encryption
Algorithms—Part 2: Asymmetric Ciphers, document ISO/IEC 18033-2,
2004.

Suqing Lin received the B.S. degree from Wenzhou
Normal College, and the M.S. degree from Sichuan
Normal University, China. She is currently pursuing
the Ph.D. degree in information security with the
Institute of Information Engineering, Chinese Acad-
emy of Sciences. After receiving the M.S. degree,
she was an Assistant and a Lecturer with the City
College of Wenzhou University. Her research inter-
ests include cryptography and information security.

2130 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 10, OCTOBER 2015

Rui Zhang received the B.E. degree from Tsinghua
University, and the M.S./Ph.D. degrees from
The University of Tokyo. He was a JSPS Research
Fellow. He joined National Institute of Advanced
Industrial Science and Technology, Japan, as a
Research Scientist. He is currently with the Institute
of Information Engineering, Chinese Academy of
Sciences, as a Research Professor. His research inter-
ests include applied cryptography, network security,
and information theory.

Hui Ma received the B.E. degree in information
security from the Nanjing University of Aeronautics
and Astronautics, China, in 2008. He is currently
pursuing the Ph.D. degree in information security
with the Institute of Information Engineering,
Chinese Academy of Sciences. He is currently
involved in the security mechanisms in cloud
computing.

Mingsheng Wang received the Ph.D. degree from
Beijing Normal University, China, in 1994. He is
currently a Research Professor with the Institute
of Information Engineering, Chinese Academy of
Sciences, Beijing. His current research interests
lie in computation algebra, cryptography, and
information security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

