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Abstract—Graph partition quality affects the overall performance of parallel graph computation systems. The quality of a graph

partition is measured by the balance factor and edge cut ratio. A balanced graph partition with small edge cut ratio is generally preferred

since it reduces the expensive network communication cost. However, according to an empirical study on Giraph, the performance

over well partitioned graph might be even two times worse than simple random partitions. This is because these systems only optimize

for the simple partition strategies and cannot efficiently handle the increasing workload of local message processing when a high quality

graph partition is used. In this paper, we propose a novel partition aware graph computation engine named PAGE, which equips a new

message processor and a dynamic concurrency control model. The new message processor concurrently processes local and remote

messages in a unified way. The dynamic model adaptively adjusts the concurrency of the processor based on the online statistics. The

experimental evaluation demonstrates the superiority of PAGE over the graph partitions with various qualities.

Index Terms—Graph computation, graph partition, message processing

Ç

1 INTRODUCTION

MASSIVE big graphs are prevalent nowadays. Prominent
examples include web graphs, social networks and

other interactive networks in bioinformatics. The up to date
web graph contains billions of nodes and trillions of edges.
Graph structure can represent various relationships bet-
ween objects, and better models complex data scenarios.
The graph-based processing can facilitate lots of important
applications, such as linkage analysis [8], [18], community
discovery [20], pattern matching [22] and machine learning
factorization models [3].

With these stunning growths of a variety of large graphs
and diverse applications, parallel processing becomes the
de facto graph computing paradigm for current large scale
graph analysis. A lot of parallel graph computation systems
have been introduced, e.g., Pregel, Giraph, GPS and Graph-
Lab [23], [1], [27], [21]. These systems follow the vertex-
centric programming model. The graph algorithms in them
are split into several supersteps by synchronization barriers.
In a superstep, each active vertex simultaneously updates
its status based on the neighbors’ messages from previous
superstep, and then sends the new status as a message to its
neighbors. With the limited workers (computing nodes) in
practice, a worker usually stores a subgraph, not a vertex, at
local, and sequentially executes the local active vertices. The
computations of these workers are in parallel.

Therefore, graph partition is one of key components
that affect the graph computing performance. It splits the
original graph into several subgraphs, such that these

subgraphs are of about the same size and there are few
edges between separated subgraphs. A graph partition
with high quality indicates there are few edges connect-
ing different subgraphs while each subgraph is in similar
size. The ratio of the edges crossing different subgraphs
to the total edges is called edge cut (ratio). A good bal-
anced partition (or high quality partition) usually has a
small edge cut and helps improve the performance of sys-
tems. Because the small edge cut reduces the expensive
communication cost between different subgraphs, and the
balance property generally guarantees that each subgraph
has similar computation workload.

However, in practice, a good balanced graph partition
even leads to a decrease of the overall performance in exist-
ing systems. Fig. 1 shows the performance of PageRank
algorithm on six different partition schemes of a large web
graph dataset, and apparently the overall cost of PageRank
per iteration increases with the quality improvement of dif-
ferent graph partitions. As an example, when the edge cut
ratio is about 3.48 percent in METIS, the performance is
about two times worse than that in simple random partition
scheme where edge cut is 98.52 percent. It indicates that the
parallel graph system may not benefit from the high quality
graph partition.

Fig. 1b also lists local communication cost and sync
remote communication cost (explained in Section 2). We
can see that, when the edge cut ratio decreases, the sync
remote communication cost is reduced as expected. How-
ever, the local communication cost increases fast unexpect-
edly, which directly leads to the downgrade of overall
performance. This abnormal outcome implies the local mes-
sage processing becomes a bottleneck in the system and
dominates the overall cost when the workload of local mes-
sage processing increases.

Lots of existing parallel graph systems are unaware of
such effect of the underlying partitioned subgraphs, and
ignore the increasing workload of local message processing
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when the quality of partition scheme is improved. There-
fore, these systems handle the local messages and remote
messages unequally and only optimize the processing of
remote messages. Though there is a simple extension of cen-
tralized message buffer used to process local and remote
incoming messages all together [27], the existing graph sys-
tems still cannot effectively utilize the benefit of high quality
graph partitions.

In this paper, we present a novel graph computation
engine, partition aware graph computation engine (PAGE).
To efficiently support computation tasks with different parti-
tioning qualities, we develop some unique components
in this new framework. First, in PAGE’s worker, communica-
tion module is extended with a new dual concurrent mes-
sage processor. The message processor concurrently handles
both local and remote incoming messages in a unified way,
thus accelerating the message processing. Furthermore, the
concurrency of the message processor is tunable according to
the online statistics of the system. Second, a partition aware
module is added in each worker to monitor the partition-
related characters and adjust the concurrency of the message
processor adaptively to fit the online workload.

To fulfill the goal of estimating a reasonable concurrency
for the dual concurrent message processor, we introduce
the Dynamic Concurrency Control Model (DCCM). Since
the message processing pipeline satisfied the producer-
consumer model, several heuristic rules are proposed by
considering the producer-consumer constraints. With the
help of DCCM, PAGE provides sufficient message process
units to handle current workload and each message process
unit has similar workload. Finally, PAGE can adaptively
accept various qualities of the integrated graph partition.

A prototype of PAGE has been set up on top of Giraph
(version 0.2.0). The experiment results demonstrate that the
optimizations in PAGE can enhance the performance of
both stationary and non-stationary graph algorithms on
graph partitions with various qualities.

The main contributions of our work are summarized as
follows:

� We propose the problem that existing graph compu-
tation systems cannot efficiently exploit the benefit
of high quality graph partitions.

� We design a new partition aware graph computation
engine, called PAGE. It can effectively harness the
partition information to guide parallel processing
resource allocation, and improve the computation
performance.

� We introduce a dual concurrent message processor.
Themessage processor concurrently processes incom-
ing messages in a unified way and is the cornerstone
in PAGE.

� We present a dynamic concurrency control model.
The model estimates concurrency for dual concur-
rent message processor by satisfying the producer-
consumer constraints. The model always generate
proper configurations for PAGE when the graph
applications or underlying graph partitions change.

� We implement a prototype of PAGE and test it with
real-world graphs and various graph algorithms.
The results clearly demonstrate that PAGE performs
efficiently over various graph partitioning qualities.

This paper extends a preliminary work [32] in the follow-
ing aspects. First, we detailed analyze the relationship
among the workload of message processing, graph algo-
rithms and graph partition. Second, technical specifics
behind the dynamic concurrency control model are ana-
lyzed clearly. Third, the practical dynamic concurrency con-
trol model, which estimates the concurrency in incremental
fashion, is discussed. Fourth, to show the effectiveness of
DCCM, the comparison experiment between DCCM and
manual tuning are conducted. Fifth, to show the advantage
and generality of PAGE, more graph algorithms, such as
diameter estimator, breadth first search (BFS), single source
shortest path (SSSP), are ran on PAGE.

The remaining paper is organized as follows. Section 2
discusses the workload of message processing in graph
computation systems. We introduce PAGE’s framework in
Section 3. Sections 4 and 5 elaborate the dual concurrent
message processor and dynamic concurrency control
model respectively. The experimental results are shown in
Section 6. Finally, we review the related work and con-
clude the paper in Sections 7 and 8.

2 THE WORKLOAD OF MESSAGE PROCESSING

In Pregel-like graph computation systems, vertices exchange
their status through message passing. When the vertex
sends a message, the worker first determines whether the
destination vertex of the message is owned by a remote
worker or the local worker. In the remote case, the message
is buffered first. When the buffer size exceeds a certain
threshold, the largest one is asynchronously flushed, deliv-
ering each to the destination as a single message. In the local
case, the message is directly placed in the destination
vertex’s incoming message queue [23].

Therefore, the communication cost in a single worker is
split into local communication cost and remote communica-
tion cost. Combining the computation cost, the overall cost
of a worker has three components. Computation cost,
denoted by tcomp, is the cost of execution of vertex programs.
Local communication cost, denoted by tcomml, represents the
cost of processing messages generated by the worker itself.
Remote communication cost, denoted by tcommr, includes
the cost of sending messages to other workers and waiting
for them processed. In this paper, we use the cost of process-
ing remote incoming messages at local to approximate
the remote communication cost. There are two reasons
for adopting such an approximation. First, the difference

Fig. 1. PageRank on various web graph1 partitions.

1. uk-2007-05-u, http://law.di.unimi.it/datasets.php,please refer to
the detailed experiment setup in Section 6.
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between two costs is the network transferring cost, which is
relatively small compared to remote message processing
cost. Second, the waiting cost of the remote communication
cost is dominated by the remote message processing cost.

The workload of local (remote) message processing deter-
mines the local (remote) communication cost. The graph par-
tition influences the workload distribution of local and
remote message processing. A high quality graph partition,
which is balanced and has small edge cut ratio, usually leads
to the local message processing workload is higher than the
remote message processing workload, and vice versa.

2.1 The Influence of Graph Algorithms

In reality, besides the graph partition, the actual workload
of message processing in an execution instance is related to
the characteristics of graph algorithms as well.

Here we follow the graph algorithm category introduced
in [17]. On basis of the communication characteristics of
graph algorithms when running on a vertex-centric graph
computation system, they are classified into stationary
graph algorithms and non-stationary graph algorithms. The
stationary graph algorithms have the feature that all vertices
send and receive the same distribution of messages between
supersteps, like PageRank, Diameter Estimation [14]. In
contrast, the destination or size of the outgoing messages
changes across supersteps in the non-stationary graph algo-
rithms. For example, traversal-based graph algorithms, e.g.,
breadth first search and single source shortest path, are the
non-stationary ones.

In the stationary graph algorithms, every vertex has the
same behavior during the execution, so the workload of
message processing only depends on the underlying graph
partition. When a high quality graph partition is applied,
the local message processing workload is higher than the
remote one, and vice versa. The high quality graph partition
helps improve the overall performance of stationary graph
algorithms, since processing local messages is cheaper than
processing remote messages, which has a network transfer-
ring cost.

For the traversal-based graph algorithms belonging to the
non-stationary category, it is also true that the local message
processing workload is higher than the remote one when a
high quality graph partition is applied. Because the high
quality graph partition always clusters a dense subgraph
together, which is traversed in successive supersteps. How-
ever, the high quality graph partition cannot guarantee a
better overall performance for the non-stationary ones,
because of the workload imbalance of the algorithm itself.
This problem can be solved by techniques in [17], [33].

In this paper, we focus on the efficiency of a worker
when different quality graph partitions are applied. The
systems finally achieve better performance by improving
the performance of each worker and leave the workload
imbalance to the dynamic repartition solutions. The next
subsection will reveal the drawback in the existing systems
when handling different quality graph partitions.

2.2 The Cost of a Worker in Pregel-Like Systems

As mentioned before, the cost of a worker has three compo-
nents. Under different designs of the communication

module, there are several combinations of above three com-
ponents to determine the overall cost of a worker. Fig. 2 lists
two possible combinations and illustrates fine-grained cost
ingredients as well. Components in a single bar mean that
their costs are additive because of the sequential processing.
The overall cost equals the highest one among these inde-
pendent bars.

The cost combination inGiraph is illustrated in Fig. 2a. The
computation cost and local communication cost are in the
same bar, as Giraph directly processes local message process-
ing during the computation. The sync remote communication
cost, tsyncr ¼ tcommr � tcomp � tcomml, is the cost of waiting for
the remote incoming message processing to be accomplished
after the computation and local message processing finished.
This type of the combination processes local incoming mes-
sages and remote incoming messages unequally, and the
computation might be blocked by processing local incoming
messages. When the workload of processing local incoming
messages increases, the performance of a worker degrades
severely. This is the main cause that Giraph suffers from a
good balanced graph partitionwhich is presented in Section 1.

3 PAGE

PAGE, which stands for Partition Aware Graph computa-
tion Engine, is designed to support different graph partition
qualities and maintain high performance by an adaptively
tuning mechanism and new cooperation methods. Fig. 3a
illustrates the architecture of PAGE. Similar to the majority
of existing parallel graph computation systems, PAGE fol-
lows the master-worker paradigm. The computing graph is
partitioned and distributively stored among workers’ mem-
ory. The master is responsible for aggregating global statis-
tics and coordinating global synchronization. The novel
worker in Fig. 3b is equipped with an enhanced communi-
cation module and a newly introduced partition aware
module. Thus the workers in PAGE can be aware of the
underlying graph partition information and optimize the
graph computation task.

3.1 Overview of Two Modules

The enhanced communication module in PAGE integrates a
dual concurrent message processor, which separately pro-
cesses local and remote incoming messages, and allows the
system to concurrently process the incoming messages in a
unified way. The concurrency of dual concurrent message
processor can be adjusted by the partition aware model
online, to fit the realtime incoming message processing

Fig. 2. Different combinations of computation cost, local/remote commu-
nication cost. The arrows indicate the ingredients of overall cost.
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workload. The detailed mechanism of the dual concurrent
message processor will be described in Section 4.

The partition awaremodule contains two key components:
a monitor and a Dynamic Concurrency Control Model. The
monitor is used to maintain necessary metrics and provide
these information to the DCCM. The DCCMgenerates appro-
priate parameters through an estimation model and changes
the concurrency of dual concurrent message processor. The
details ofmonitor andDCCMwill be presented in Section 5.

With the help of the enhanced communication module
and the partition aware module, PAGE can dynamically
tune the concurrency of message processor for local and
remote message processing with light-weight overhead,
and provide enough message process units to run itself flu-
ently on graph partition with different qualities.

3.2 Graph Algorithm Execution in PAGE

The main execution flow of graph computation in PAGE is
similar to the other Pregel-like systems. However, since
PAGE integrates the partition aware module, there exist
some extra works in each superstep and the modified proce-
dure is illustrated in Algorithm 1. At the beginning, the
DCCM in partition awaremodule calculates suitable parame-
ters based on metrics from previous superstep, and then
updates the configurations (e.g., concurrency, assignment
strategy) of dual concurrent message processor. During a
superstep, the monitor tracks the related statistics of key met-
rics in the background. The monitor updates key metrics
according to these collected statistics and feeds up to date val-
ues of themetrics to the DCCMat the end of each superstep.

Algorithm 1: Procedure of a Superstep in PAGE

1: DCCM reconfigures dual concurrent message processor
parameter.

2: foreach active vertex v in partition P do
3: call vertex program of v;
4: send messages to the neighborhood of v;
5: /* monitor tracks related statistics in the

background. */
6: end foreach
7: synchronization barrier
8: monitor updates key metrics, and feeds to the DCCM

Note that PAGE will reconfigure the message processor
in every superstep in case of the non-stationary graph algo-
rithms. As discussed in Section 2, the quality of underlying
graph partition may change between supersteps for the
non-stationary graph algorithms with dynamic workload
balance strategy. Even if the static graph partition strategy
is used, the variable workload characteristics of non-station-
ary graph algorithms require the reconfigurations across
supersteps. In summary, PAGE can adapt to different work-
loads caused by the underlying graph partition and the
graph algorithm itself.

4 DUAL CONCURRENT MESSAGE PROCESSOR

The dual concurrent message processor is the core of the
enhanced communication model, and it concurrently pro-
cesses local and remote incoming messages in a unified
way. With proper configurations for this new message pro-
cessor, PAGE can efficiently deal with incoming messages
over various graph partitions with different qualities.

As discussed in Section 2,messages are delivered in block,
because the network communication is an expensive opera-
tion [10]. But this optimization raises extra overhead in terms
that when a worker receives incoming message blocks, it
needs to parse them and dispatches extracted messages to
the specific vertex’s message queue. In PAGE, the message
process unit is responsible for this extra overhead, and it is a
minimal independent process unit in the communication
module. A remote (local) message process unit only pro-
cesses remote (local) incoming message blocks. The message
processor is a collection of message process units. The remote
(local) message processor only consists of remote (local) mes-
sage process units. Fig. 4 illustrates the pipeline that the mes-
sage process unit handles the overhead.

According to the cost analysis in Section 2.2, we can see
that a good solution is to decouple the local communication
cost from the computation cost, as the computation will not
be blocked by any communication operation. Besides, the
communication module can take over both local and remote
communications, which makes it possible to process local
and remote messages in a unified way. Furthermore, the
incoming message blocks are concurrently received from
both local and remote sources. It is better to process the local
and remote incoming messages separately. These two

Fig. 3. The framework of PAGE.
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observations help us design a novel message processor,
which consists of a local message processor and a remote
message processor. This novel message processor design
leads to the cost combination in Fig. 2b. The sync local com-
munication cost, tsyncl ¼ tcomml � tcommr, is similar to the
sync remote communication cost. It is the cost of waiting for
the local incoming message processing to be accomplished
after all the remote messages have been processed.

Moreover, in parallel graph computation systems, the
incoming messages are finally appended to the vertex’s
message queue, so different vertices can be easily updated
concurrently. Taking this factor into consideration, we
deploy the concurrent message process units at the internal
of local and remote message processor. Therefore, both local
and remote message processors can concurrently process
incoming message blocks, and local and remote incoming
messages are processed in a unified way.

In summary, the new message processor consists of a
local and a remote message processor respectively. This is
the first type of the concurrency in the message processor.
The second type of the concurrency is at the internal of local
and remote message processor. This explains the reason we
name this new message processor as dual concurrent mes-
sage processor.

5 DYNAMIC CONCURRENCY CONTROL MODEL

The concurrency of dual concurrent message processor
heavily affects the performance of PAGE. But it is expensive
and also challenging to determine a reasonable concurrency
ahead of real execution without any assumption [25]. There-
fore, PAGE needs a mechanism to adaptively tune the con-
currency of the dual concurrent message processor. The
mechanism is named Dynamic Concurrency Control Model,
DCCM for short.

In PAGE, the concurrency control problem can be mod-
eled as a typical producer-consumer scheduling problem,
where the computation phase generates messages as a pro-
ducer, and message process units in the dual concurrent
message processor are the consumers. Therefore, the pro-
ducer-consumer constraints [29] should be satisfied when
solving the concurrency control problem.

For the PAGE situation, the concurrency control prob-
lem arises consumer constraints. Since the behavior of pro-
ducers is determined by the graph algorithms, PAGE only
requires to adjust the consumers to satisfy the constraints
(behavior of graph algorithms), which are stated as follows.

First, PAGE provides sufficient message process units to
make sure that new incoming message blocks can be proc-
essed immediately and do not block the whole system.
Meanwhile, no message process unit is idle.

Second, the assignment strategy of these message process
units ensures that each local/remote message process unit

has balanced workload since the disparity can seriously
destroy the overall performance of parallel processing.

Above requirements derive two heuristic rules:

Rule 1: Ability lower-bound: the message processing ability of
all the message process units should be no less than
the total workload of message processing.

Rule 2: Workload balance ratio: the assignment of total mes-
sage process units should satisfy the workload ratio
between local and remote message processing.

Following sections first introduce themathematical formu-
lation of DCCM, and then discuss how DCCM mitigates the
influences of various graph partition qualities. At last, we
present the implementation of DCCM. Table 1 summaries the
frequently used notations in the following analysis.

5.1 Mathematical Formulation of DCCM

In PAGE, DCCMuses a set of general heuristic rules to deter-
mine the concurrency of dual concurrent message processor.
Theworkload ofmessage processing is the number of incom-
ing messages, and it can be estimated by the incoming speed
of messages. Here we use sl and sr to denote the incoming
speed of local messages and the incoming speed of remote
messages, respectively. The ability of a single message proc-
essing unit is the speed of processing incomingmessages, sp.

On basis of aforementioned two heuristic rules, the fol-
lowing equations must hold:

nmp � sp � sl þ sr; Rule1
nlmp

nrmp
¼ sl

sr
; Rule2

(1)

where nmp stands for the total number of message process
units, nlmp represents the number of local message pro-
cess units, and nrmp is the number of remote message
process unit. Meanwhile, nmp ¼ nlmp þ nrmp.

Solving Equation (1) yields

nlmp � sl
sp

;

nrmp � sr
sp

:
(2)

Fig. 4. Message processing pipeline in PAGE.

TABLE 1
Frequently Used Notations

Symbols Description

er Edge cut ratio of a local partition.
p Quality of network transfer.
sp Message processing speed.
sg Message generating speed.
srg Speed of remote messages generation
sl Incoming speed of local messages.
sr Incoming speed of remote messages.
nmp Number of message process units.
nrmp Number of remote message process units.
nlmp Number of local message process units.
tcomp Computation cost.
tcomm Communication cost.
tsycnr Cost of syncing remote communication.
tsycnl Cost of syncing local communication.
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Finally, DCCM can estimate the concurrency of local
message processor and the concurrency of remote message
processor separately, if the metrics sl, sr, sp are known. The
optimal concurrency reaches when DCCM sets nlmp ¼ dslspe
and nrmp ¼ dsrspe. Because, at this point, PAGE can provide

sufficient message process units, and it consumes minimal
resources as well.

5.2 Adaptiveness on Various Graph Partitions

Section 2 has analyzed that the workload of message proc-
essing is related to both graph partition and graph
algorithms. In this section, we explain the reason that previ-
ous DCCM can adaptively tune the concurrency of dual
concurrent message processor when the underlying graph
partition quality is changed.

Before the detailed discussion, we first give three metrics.

1) Edge cut ratio of a local partition. It is the ratio between
cross edges and total edges in a local graph partition.
It is denoted as er. This metric judges the quality of
graph partitioning in a worker. The higher ratio indi-
cates the lower quality.

2) Message generating speed. It represents the overall gen-
erating velocity of all outgoing messages in a worker.
This metric implies the total workload for a worker.
We denote it as sg.

3) Quality of network transfer. This reflects the degree of
network influence to the message generation speed
sg. When the generated messages are sent to a
remote worker, the speed of generated messages is
cut-off in the view of the remote worker. This is
caused by the factor that network I/O operation is
slower than local operation. The quality is denoted
as p 2 ð0; 1Þ. The larger p indicates the better net-
work environment. In addition, we can define the
equivalent speed of remote messages’ generation as
srg ¼ sg � p.

Now we proceed to reveal the relationship between
DCCM and the underlying graph partition. Following
analysis is based on the assumption that the stationary
graph algorithms are ran on a certain partition. Because
stationary graph algorithms have predictable communi-
cation feature.

The local incoming messages are the one whose source
vertex and destination vertex belong to the same partition.
Thus, the incoming speed of local message, sl, is the same as
sg � ð1� erÞ, which stands for the generating speed of local
messages. Similarly, sr equals srg � er. Then Equation (1)
can be rewrited as

nmp � sp ¼ sg � ð1� erÞ þ srg � er;

nlmp

nrmp
¼ sg � ð1� erÞ

srg � er
¼ 1� er

p� er
:

(3)

Solving nmp, nlmp, nrmp from Equations (3), we can have
the following results:

nmp ¼ sg
sp

ð1� ð1� pÞ � erÞ; (4)

nlmp ¼ nmp � 1� er

p� erþ ð1� erÞ ; (5)

nrmp ¼ nmp � p� er

p� erþ ð1� erÞ : (6)

From Equations (4), (5), (6), we have following observa-
tions that indicate correlated relationships between graph
partition and the behavior of DCCM when running station-
ary graph algorithms on PAGE.

First, PAGE needs more message process units with the
quality growth of graph partitioning, but the upper bound
still exists. This is derived from the fact that, in Equation (4),
the nmp increases while er decreases, since the p is fixed in a
certain environment. However, the conditions, 0 < p < 1
and 0 < er < 1, always hold, so that nmp will not exceed
sg=sp. Actually, not only the parameters sg, sp dominate the
upper bound of total message process units, but also p
heavily affects the accurate total number of message process
units under various partitioning quality during execution.

The accurate total number of message process units is
mainly affected by sg and sp, while er only matters when
the network is really in low quality. Usually in a high-end
network environment where p is large, the term ð1 � pÞ�
er is negligible in spite of er, and then the status of whole
system (sg, sp) determines the total number of message pro-
cess units. Only in some specific low-end network environ-
ments, the graph partitioning quality will severely affect the
decision of total number of message process units.

Unlike the total number of message process units, the
assignment strategy is really sensitive to the parameter er.
From Equation (3), we can see that the assignment strategy
is heavily affected by (1 � er)/er, as the value of p is gener-
ally fixed for a certain network. Lots of existing systems,
like Giraph, do not pay enough attention to this phenome-
non and suffer from high quality graph partitions. Our
DCCM can easily avoid the problem by handling online
assignment based on Equations (5) and (6).

Finally, when the non-stationary graph algorithms are
ran on PAGE, the graph partition influence to the DCCM is
similar as before. The difference is that the edge cut ratio of
a local partition is only a hint, not the exact ratio for local
and remote incoming message distribution. Because the
unpredictable communication features of non-stationary
graph algorithms cannot guarantee that a lower er leads to
higher workload of local message processing. However it
does for many applications in reality, such as traversal-
based graph algorithms.

5.3 Implementation of DCCM

Given the heuristic rules and characteristic discussion of the
DCCM, we proceed to present its implementation issues
within the PAGE framework. To incorporate the DCCM’s
estimation model, PAGE is required to equip a monitor to
collect necessary information in an online way. Generally,
the monitor needs to maintain three high-level key metrics:
sp, sl, sr. However, there is a problem that it is difficult to
measure accurate sp. Because the incoming message blocks
are not continuous and the granularity of time in the operat-
ing system is not precise enough, it is hard for the DCCM to
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obtain an accurate time cost of processing these message
blocks. In the end, it leads to an inaccurate sp.

Therefore, we introduce a DCCM in incremental fashion
based on the original DCCM. Recall the cost analysis in
Section 2, we can materialize the workload through multi-
plying the speed and the corresponding cost. Equation (2)
can be represented as follows (use ‘¼’ instead of ‘�’):

sl � tcomp ¼ sp � n;
lmp � ðtcomp þ tsyncr þ tsynclÞ (7)

sr � tcomp ¼ sp � n;
rmp � ðtcomp þ tsyncrÞ; (8)

where n;
lmp and n;

rmp are the concurrency of local and remote
message processor in current superstep, respectively.

The estimated concurrency of the local and remote mes-
sage processor for the next superstep can be

nlmp ¼ sl
sp

¼ n;
lmp � 1þ tsyncr þ tsyncl

tcomp

� �
(9)

nrmp ¼ sr
sp

¼ n;
rmp � 1þ tsyncr

tcomp

� �
: (10)

Finally, the new DCCM can estimate the latest nlmp and
nrmp based on the previous values and the corresponding
time cost tcomp, tsyncl, tsyncr. The monitor is only responsible
to track three cost-related metrics. As the monitor just
records the time cost without any additional data structures
or complicated statistics, it brings the negligible overhead.
In our PAGE prototype system implementation, we apply
the DCCM with incremental fashion to automatically deter-
mine the concurrency of the system.

5.4 Extension to Other Data Processing Scenarios

Although the initial goal of dual concurrent message pro-
cessor and dynamic concurrency control model is to help
graph computation system efficiently handle messages and
be partition aware, we found that the techniques can be ben-
eficial to other data processing scenarios as well.

First, as a graph computation system, PAGE can also effi-
ciently handle other structured data on which the problem
can be remodeled as graph. For example sparse matrix-
vector multiplication can be remodeled as a vertex-centric
aggregation operator in a graph whose adjacent matrix
equals the given sparse matrix and vertex values are from
the given vector [26], then the techniques in PAGE will
improve the performance of sparse matrix-vector multipli-
cation under the corresponding graph model.

Second, the techniques in PAGE can also be extended
to enhance other big data processing platform which sat-
isfies the producer-consumer model. Distributed stream
computing platform (e.g., Yahoo S4 [24], Twitter Storm
[2]) is one kind of popular platforms to process real-time
big data. In Storm, the basic primitives for doing stream
transformations are “spouts” and “bolts”. A spout is a
source of streams. A bolt consumes any number of input
streams, conducts some processing, and possibly emits
new streams. Given an example of word count for a large
document set, the core bolt keeps a map in memory from
word to count. Each time it receives a word, it updates
its state and emits the new word count. In practice, the

parallelism of a blot is specified by user and this is inflex-
ible. Since the logic of a blot satisfies the producer-
consumer model, by designing an estimation model that
is similar to DCCM, the stream computing platform can
also automatically adjust the proper number of process-
ing elements according to the workload.

6 EMPIRICAL STUDIES

We have implemented the PAGE prototype on top of an
open source Pregel-like graph computation system, Giraph
[1]. To test its performance, we conducted extensive experi-
ments and demonstrated the superiority of our proposal.
The following section describes the experimental environ-
ment, data sets, baselines and evaluation metrics. The
detailed experiments evaluate the effectiveness of DCCM,
the advantages of PAGE compared with other methods and
the performance of PGAE on various graph algorithms.

6.1 Experimental Setup

All experiments are ran on a cluster of 24 nodes, where each
physical node has an AMD Opteron 4180 2.6 Ghz CPU,
48 GB memory and a 10 TB disk RAID. Nodes are connected
by 1 Gbt routers. Two graph data sets are used: uk-2007-05-u
[7], [6] and livejournal-u [5], [19]. The uk-2007-05-u is a web
graph, while livejournal-u is a social graph. Both graphs are
undirected ones created from the original release by adding
reciprocal edges and eliminating loops and isolated nodes.
Table 2 summarizes the meta-data of these data sets with
both directed and undirected versions.

Graph partition scheme. We partition the large graphs with
three strategies: Random, METIS and linear deterministic
greedy (LDG).METIS [16] is a popular off-line graph partition
packages, and LDG [30] is a well-known stream-based graph
partition solution. The uk-2007-05-u graph is partitioned into
60 subgraphs, and livejournal-u graph is partitioned into 2, 4,
8, 16, 32, 64 partitions, respectively. Balance factors of all these
partitions do not exceed 1 percent, and edge cut ratios are list
in Fig. 1a and Table 3. The parameter setting of METIS is the
same asMETIS-balanced approach inGPS [27].

Furthermore, in order to generate various partition quali-
ties of a graph, we extend the original LDG algorithm to an
iterative version. The iterative LDG partitions the graph
based on previous partition result, and gradually improves
the partition quality in every following iteration. We name
the partition result from iterative LDG as LDGid, where a
larger id indicates the higher quality of graph partitioning
and the more iterations executed.

Baselines. Throughout all experiments, we use two base-
lines for the comparison with PAGE.

The first one is Giraph. However, as we notice from Fig. 2a
that the local message processing and computation run

TABLE 2
Graph Data Set Information

Graph Vertices Edges Directed

uk-2007-05 105,896,555 3,738,733,648 yes
uk-2007-05-u 105,153,952 6,603,753,128 no
livejournal 4,847,571 68,993,773 yes
livejournal-u 4,846,609 85,702,474 no
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serially in the default Giraph. This cost combination model is
inconsistent with our evaluation. We modify it to asynchro-
nously process the local messages, so that Giraph can concur-
rently run computation, local message processing and remote
message processing. In the following experiments, Giraph
refers to this modified Giraph version. Note that, this modifi-
cationwill not decrease the performance of Giraph.

The other one is derived from the technique used in GPS.
One optimization in GPS, applies a centralized message
buffer and sequentially processes incoming messages with-
out synchronizing operations, which decouples the local
message processing from the computation and treats the
local and remote message equivalently. We implement this
optimization on the original Giraph and denote it as Giraph-
GPSop.

Metrics for evaluation. We use the following metrics to
evaluate the performance of a graph algorithm on a graph
computation system.

� Overall cost. It indicates the whole execution time of a
graph algorithm when running on a computation
system. Due to the property of concurrent computa-
tion and communication model, this metric is gener-
ally determined by the slower one between the
computation and communication.

� Sync remote communication cost. It presents the cost of
waiting for all I/O operations to be accomplished
successfully after the computation finished. This
metric reveals the performance of remote message
processing.

� Sync local communication cost. It means the cost of wait-
ing for all local messages to be processed successfully
after syncing remote communication. Thismetric indi-
cates the performance of local message processing.

All three metrics are measured by the average time cost per
iteration. The relationship among these metrics can be
referred to Fig. 2.

6.2 Evaluation on DCCM

Dynamic Concurrency Control Model is the key component
of PAGE to determine the concurrency for dual concurrent
message processor, balance the workload for both remote
and local message processing as well, and hence improve
the overall performance. In this section, we demonstrate the
effectiveness of DCCM through first presenting the concur-
rency automatically chosen by DCCM based on its estima-
tion model, and then showing that these chosen values are
close to the manually tuned good parameters. Finally, we
also show DCCM converges efficiently to estimate a good
concurrency for dual concurrent message processor.

6.2.1 Concurrency Chosen by DCCM

Fig. 5 shows the concurrency of dual concurrent message
processor automatically determined by the DCCM, when
running PageRank on uk-2007-05-u graph. The variation of
concurrency on various graph partition schemes are consis-
tent with the analysis in Section 5.2.

In Fig. 5, there are two meaningful observations. First, the
total number of message process units, nmp, is always equal
to seven across six different partition schemes. This is
because the cluster has a high-speed network and the quality
of network transfer, p, is high as well. Second, with the
decrease of edge cut ratio (from left to right in Fig. 5), the nlmp

decided by the DCCM increases smoothly to handle the
growing workload of local messages processing, and the
selected nrmp goes oppositely. According to above parame-
ters’ variations across different graph partition schemes, we
also conclude that the assignment strategy is more sensitive
to the edge cut ratio than the total message process units nmp.

6.2.2 Results by Manual Tuning

Here we conduct a series of manual parameter tuning
experiments to discover the best configurations for the dual
concurrent message processor when running PageRank on
uk-2007-05-u in practice. Hence, it helps verify that the
parameters determined by DCCM are effective.

We tune the parameters nlmp and nrmp one by one on a
specific partition scheme. When one variable is tuned, the
other one is guaranteed to be sufficiently large that does not
seriously affect the overall performance. When we conduct
the tuning experiment on METIS scheme to get the best
number of local message process units (nlmp), for example,
we manually provide sufficient remote message process
units (nrmp) with the DCCM feature off, and then increase
nlmp for each PageRank execution instance until the overall
performance becomes stable.

Fig. 6 shows the tuning results of running PageRank on
Random and METIS partition schemes respectively. We do
not list results about LDG1 to LDG4, as they all lead to the
same conclusions as above two schemes. The basic rule of
determining the proper configurations for a manual tuning
is choosing the earliest points where the overall perfor-
mance is close to the stable one as the best configuration.

As shown in Fig. 6a, when the number of remote mes-
sage process units exceeds five, the overall performance is
converged and changes slightly. This indicates the remote
message processor with five message process units inside is
sufficient for this workload, which is running PageRank on
random partitioned uk-2007-05-u. Though, the sync remote

TABLE 3
Partition Quality of Livejournal-u

Partition Scheme LDG(%) Random(%) METIS(%)

2 Partitions 20.50 50.34 6.46
4 Partitions 34.24 75.40 15.65
8 Partitions 47.54 87.86 23.54
16 Partitions 52.34 94.04 28.83
32 Partitions 55.55 97.08 32.93
64 Partitions 57.36 98.56 36.14

Fig. 5. Assignment strategy on different partition schemes in PAGE.
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communication cost can still decrease a bit with continu-
ously increasing nrmp. But the large number of message
process units will also affect other parts of the system (e.g.,
consuming more computation resources), the overall perfor-
mance remains stable because of the tradeoff between two
factors (i.e., number of message processor units and influ-
ence on other parts of the systems).

From Fig. 6b, we can easily figure out one local message
process unit is sufficient to handle the remained localmessage
processing workload in Random scheme. More message pro-
cess units do not bring any significant improvement. Based
on this tuning experiment, we can see that totally six message
process units are enough. Among them, one is for the local
message processor, and the other five are for remote message
processor.

In Fig. 5, the parameters chosen by the DCCM are six
message process units for the remote message processor
and one for local message processor, when the Random
partition scheme is applied. Though they do not exactly
match the off-line tuned values, but they fall into the range
where the overall performance has been converged and
the difference is small. So the DCCM generates a set of
parameters almost as good as the best ones acquired from
the off-line tuning.

By analyzing Figs. 6c and 6d, we can see seven message
process units are sufficient, in which five belong to local
message processor and the remained are for remote mes-
sage processor. This time the DCCM also comes out the sim-
ilar results as the manually tuned parameters.

Through a bunch of parameter tuning experiments, we
verify the effectiveness of the DCCM and find that the
DCCM can choose appropriate parameters.

6.2.3 Adaptivity of DCCM

In this section, we show the results about the adaptivity on
various graph partition scheme in PAGE. All the experi-
mental results show that the DCCM is sensitive to both par-
tition quality and initial concurrency setting. It responses

fast and can adjust PAGE to a better status within a few
iterations.

We run the PageRank on Random and METIS graph par-
tition schemes, with randomly setting the concurrency of
the remote message processor and local message processor
at the beginning, and let DCCM automatically adjust the
concurrency.

Fig. 7b illustrates each iteration’s performance of Pag-
eRank running on the METIS partition scheme of uk-
2007-05-u. It clearly shows that PAGE can rapidly adjust
itself to achieve better performance for the task. It costs
about 93 seconds to finish the first iteration, where the
sync local communication cost is around 54 seconds.
After first iteration, PAGE reconfigures the concurrency
of dual concurrent message processor, and achieves bet-
ter overall cost in successive iterations by speeding up
the process of local messages. The second iteration takes
44 seconds, and the sync local communication cost is
close to zero already. Similar results can be obtained for
the Random partitioning scheme, shown in Fig. 7a.

6.3 Comparison with Other Methods

In this section, we compare the performance of PAGE
with the Pregel-like baselines, i.e., Giraph and Giraph-
GPSop. We first present the advantage of PAGE by profil-
ing PageRank execution instance, followed by the evalua-
tion on various graph algorithms. In the end, we show
that PAGE can also handle the situation where varying
the number of partitions leads to the change of graph
partition quality.

6.3.1 Advantage of PAGE

We demonstrate that PAGE can maintain high performance
along with the various graph partition qualities. Figs. 8a
and 8b describe the PageRank performance across various
partition schemes on PAGE and Giraph. We find that, with
the increasing quality of graph partitioning, Giraph suffers
from the workload growth of local message processing and
the sync local communication cost rises fast. In contrast,
PAGE can scalably handle the upsurging workload of local
message processing, and maintain the sync local communi-
cation cost close to zero. Moreover, the overall performance
of PAGE is actually improved along with increasing the
quality of graph partitioning. In Fig. 8a, when the edge cut
ratio decreases from 98.52 to 3.48 percent, the performance
is improved by 14 percent in PAGE. However, in Giraph,
the performance is even downgraded about 100 percent at
the same time.

Fig. 6. Tuning on random and METIS partition schemes. Black points are the optimal choices.

Fig. 7. Performance on adaptively tuning by DCCM.
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From Fig. 8c, we notice the Giraph-GPSop achieves better
performance with the improving quality of graph partition
as PAGE does. But PAGE is more efficient than Giraph-
GPSop over various graph partitions with different qualities.
Comparing with Giraph, PAGE always wins for various
graph partitions, and the improvement ranges from 10 to
120 percent. However, Giraph-GPSop only beats Giraph and
gains around 10 percent improvement over METIS partition
scheme which produces a really well partitioned graph. For
Random partition, Giraph-GPSop is even about 2.2 times
worse than Giraph. It is easy to figure out that the central
message buffer in Giraph-GPSop leads to this pheno mena,
as Fig. 8c illustrates that the sync local communication cost2

is around 40 seconds, though it is stable across six partition
schemes. Overall, as a partition aware system, PAGE can
well balance the workloads for local and remote message
processingwith different graph partitions.

6.3.2 Performance on Various Graph Algorithms

In this section, we show that PAGE helps improve the per-
formances of both stationary graph algorithms and non-
stationary graph algorithms. The experiments are ran on
PAGE, Giraph and Giraph-GPSop with two stationary
graph algorithms and two non-stationary graph algo-
rithms. The two stationary graph algorithms are PageRank
and diameter estimation, and the two non-stationary ones
are breadth first search and single source shortest path.

Figs. 9a and 9b illustrate the performance of stationary
graph algorithms on Random and METIS partition schemes
of uk-2007-05-u graph data set. We find that for the station-
ary graph algorithms, when the quality of graph partition is
improved, PAGE can effectively use the benefit from a high
quality graph partition and improve the overall perfor-
mance. Compared with the Giraph and Giraph-GPSop,
PAGE outperforms them because PAGE concurrently pro-
cesses incoming messages in a unified way.

Figs. 9c and 9d present the performance of non-station-
ary graph algorithms. Similar to the stationary graph algo-
rithms, the performance of PAGE surpasses those of Giraph
and Giraph-GPSop. This implies PAGE’s architecture can
also facilitate the non-stationary graph algorithms. How-
ever, the performance is not improved when the quality of
partition scheme is increased. The reason has been

discussed in Section 2. The non-stationary graph algorithms
have a workload imbalance problem, which can be solved
by the dynamic partition strategy [17], [33].

6.3.3 Performance by Varying Numbers of Partitions

Previous experiments are all conducted on a web graph
partitioned into fixed number of subgraphs, i.e., 60 parti-
tions for uk-2007-05-u. In practice, the number of graph
partitions can be changed, and different numbers of parti-
tions will result into different partition qualities. We run a
series of experiments to demonstrate that PAGE can also
efficiently handle this situation. Here we present the
results of running PageRank on a social graph, livejour-
nal-u. Table 3 lists the edge cut ratios of livejournal-u par-
titioned into 2, 4, 8, 16, 32, 64 partitions by LDG, Random
and METIS respectively.

First, Figs. 10a, 10b and 10c all show that both PAGE and
Giraph perform better when the partition number increases
across three partition schemes, which is obvious as parallel
graph computing systems can benefit more from higher par-
allelism. When the graph is partitioned into more sub-
graphs, each subgraph has smaller size, and hence the
overall performance will be improved with each worker
having less workload. On the other hand, the large number
of subgraphs brings heavy communication, so when the
partition number reaches a certain threshold (e.g., 16 in the
experiment), the improvement becomes less significant.
This phenomenon reveals parallel processing large-scale
graph is a good choice, and it will improve the performance.

Second, the improvement between PAGE and Giraph
decreases with the increasing number of partitions. As the
number of partitions increases, the quality of graph parti-
tioning decreases which means the local message process-
ing workload decreases. Since Giraph performs well over
the low quality graph partitioning, the performance gap
between PAGE and Giraph is small when the number of
partitions is large. Besides, the point where PAGE and Gir-
aph have close performance varies with different graph par-
titioning algorithms. In METIS scheme, PAGE and Giraph
have similar performance around 64 partitions, while in
Random scheme, it is about four partitions when they are
close. The reason is that different graph partition algorithms
produce different partition quality, and the bad algorithms
will generate low quality graph partition even the number
of partitions is small.

Third, PAGE always performs better than Giraph
across three partition schemes for any fixed number of

Fig. 8. PageRank performance on different systems.

2. Due to the central message buffer, we treat all the messages as
local messages and count its cost into the local communication cost in
Giraph-GPSop.
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partitions and the reason has been discussed in Section
6.3.1. But with the increasing number of partitions, the
improvement of PAGE decreases. This is because the
workload for each node becomes low when the partition
number is large. For a relatively small graph like livejour-
nal, when the partition number is around 64, each sub-
graph only contains tens of thousand vertices. However,
the results are sufficient to show the robustness of PAGE
for various graph partitions.

7 RELATED WORK

This work is related to several research areas. Not only
graph computation systems are touched, but also the graph
partition techniques and effective integration of them are
essential to push forward current parallel graph computa-
tion systems. Here we briefly discuss these related research
directions as follows.

Graph computation systems. Parallel graph computation is
a popular technique to process and analyze large scale
graphs. Different from traditional big data analysis frame-
works (e.g., MapReduce [11]), most of graph computation
systems store graph data in memory and cooperate with
other computing nodes via message passing interface [13].
Besides, these systems adopt the vertex-centric program-
ming model and release users from the tedious communica-
tion protocol. Such systems can also provide fault-tolerant
and high scalability compared to the traditional graph proc-
essing libraries, such as Parallel BGL [12] and CGMgraph
[9]. There exist several excellent systems, like Pregel, Gir-
aph, GPS, Trinity.

Since messages are the key intermediate results in graph
computation systems, all systems apply optimization tech-
niques for the message processing. Pregel and Giraph
handle local message in computation component but con-
currently process remote messages. This is only optimized

for the simple random partition, and cannot efficiently use
the well partitioned graph. Based on Pregel and Giraph,
GPS [27] applies several other optimizations for the perfor-
mance improvement. One for message processing is that
GPS uses a centralized message buffer in a worker to
decrease the times of synchronization. This optimization
enables GPS to utilize high quality graph partition. But it is
still very preliminary and cannot extend to a variety of
graph computation systems. Trinity [28] optimizes the
global message distribution with bipartite graph partition
techniques to reduce the memory usage, but it does not dis-
cuss the message processing of a single computing node. In
this paper, PAGE focuses on the efficiency of a worker proc-
essing messages.

At the aspect of message processing techniques, the real-
time stream processing systems are also related. Usually the
streamprocessing systems are almost equal tomessage proc-
essing systems, since streams (or events) are delivered by
message passing. Backman et al. [4] introduced a system-
wide mechanism to automatically determine the parallelism
of a streamprocessing operator and themechanismwas built
on simulation-based search heuristics. In this paper, PAGE
applies a node-level dynamic control model, but the basic
idea is able to guide the design of system-wide solution.

Graph partitioning algorithms. To evaluate the perfor-
mance of distributed graph algorithm, Ma et al. introduced
three measures, which are visit times, makespan and data
shipment. As efficiency (makespan) remains the dominant
factor, they suggested to sacrifice visit times and data ship-
ment for makespan, which advocates a well-balanced graph
partition strategy when designing distributed algorithms
[22]. Actually, various graph partitioning algorithms
focused on this object as well. METIS [16], [15] is an off-line
graph partitioning package which can bring off high quality
graph partitioning subject to a variety of requirements. But
it is expensive to use METIS partitioning large graphs. More

Fig. 9. The performance of various graph algorithms.

Fig. 10. Result of various partition numbers on social graph.
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recently, streaming graph partitioning models became
appealing [30], [31]. In the streaming model, a vertex arrives
with its neighborhood, and its partition id is decided based
on the current partial graph information. The model is suit-
able for partitioning the large input graph in distributed
loading context, especially for the state-of-the-art parallel
graph computation systems. [30] described the difficulty of
the problem and identified 10 heuristic rules, in which the
linear deterministic greedy rule performs best. The LDG
assigns a vertex to a partition where the vertex has the maxi-
mal neighbors. In addition, it applies a linear penalty func-
tion to balance the workload.

Besides, several studies [17], [33], [27] focus on dynamic
graph repartition strategies to achieve the well-balanced
workload. The work of dynamic graph repartition and
PAGE are orthogonal. To balance the workload, the pro-
posed strategies repartition the graph according to the
online workload. Thus the quality of underlying graph par-
tition changes along with repartitioning. The existing graph
computation systems may suffer from the high-quality
graph partition at a certain point, but PAGE can mitigate
this drawback and improve the performance by decreasing
the cost of a worker further.

8 CONCLUSION

In this paper, we have identified the partition unaware
problem in current graph computation systems and its
severe drawbacks for efficient parallel large scale graphs
processing. To address this problem, we proposed a parti-
tion aware graph computation engine named PAGE that
monitors three high-level key running metrics and dynami-
cally adjusts the system configurations. In the adjusting
model, we elaborated two heuristic rules to effectively
extract the system characters and generate proper parame-
ters. We have successfully implemented a prototype system
and conducted extensive experiments to prove that PAGE
is an efficient and general parallel graph computation
engine.
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